Befehle des Menübands überspringen
Zum Hauptinhalt wechseln
Suche
Breadcrumb Navigation

Projektdetails

Hauptinhalt der Seite
idTitel_deuTitel_engProjekt_StartProjekt_EndeProjektstatusProjektstatus_enZALF_InstituteZALF_Institute_enIdxiZALF_PersonenIdxpLabelDetailsHomepageStartjahrSuchfeldZielsetzung_deuZielsetzung_engZALF_Institute_htmlZALF_Istitute_ENG_htmlZALF_Personen_htmlProjektleiterProjekt_Leiter_htmlProgrammbereich_htmlProgrammbereich_eng_htmlIdx_ProgrambereichProjektpartner_htmlIdx_ProjektpartnerFoerderer_htmlSchlagworteProjekttraegerProjekttraeger_htmlProjektmitarbeiter_extern_htmlProjektstatus_SortProjektstatus_en_SortAnlagenBereiche_ZALF_deBereiche_ZALF_en
2329KIKompAG - Multi-modale Datenintegration, domänenspezifische Methoden und KI zur Stärkung der Datenkompetenz in der AgrarforschungKIKompAG - Multi-modal data integration, domain-specific methods and AI to strengthen data literacy in agricultural research01.10.2022 00:00:0030.09.2025 00:00:00laufendcurrentProgrammbereich 4 „Simulations- und Datenwissenschaften“Research Area 4 „Simulation and Data Science“x94x32x31x83xRyo, Masahiro; Ghazaryan, Goharx2732x2781x<div class='ntm_PB4'>PB4</div>  2022 KIKompAG - Multi-modale Datenintegration, domänenspezifische Methoden und KI zur Stärkung der Datenkompetenz in der Agrarforschung KIKompAG - Multi-modal data integration, domain-specific methods and AI to strengthen data literacy in agricultural research Programmbereich 4 „Simulations- und Datenwissenschaften“ Ryo, Masahiro; Ghazaryan, Gohar Drittmittel Research Area 4 „Simulation and Data Science“ current laufend <div class="ExternalClassF0680CEEC07949BC9AE63018F5016489"><div> <img src="https&#58;//www.zalf.de/de/forschung_lehre/projekte/PublishingImages/KIKompAG_F%C3%B6rderhinweis%20EU_horizontal.jpg" alt="Förderhinweis EU" style="margin&#58;5px;width&#58;200px;height&#58;52px;" />​<img src="https&#58;//www.zalf.de/de/forschung_lehre/projekte/PublishingImages/KIKompAG_F%C3%B6rderhinweis%20BMBF.jpg" alt="Förderhinweis BMBF" style="margin&#58;5px;width&#58;200px;" /><br></div><p></p> <p>Das Hauptziel von KIKompAg ist die Entwicklung eines kohärenten Konzepts für die Integration&#160;von multimodalen Daten, KI- und Simulationsmethoden zur skalenübergreifend Charakterisierung&#160;landwirtschaftlicher Systeme und, darauf aufbauend, die Erstellung eines umfassenden&#160;Lehrplans, der mehrere Aspekte der Analyse von Agrarökosystemen mit Daten aus multiplen&#160;Quellen abdeckt. Das Framework kombiniert modernste Fern- und Naherkundungsprodukte mit&#160;verschiedenen Deep Learning- und mechanistischen Modellen sowie diversen ober- und&#160;unterirdischen Referenzdatensätzen sowohl für Acker- als auch für Grünland. Wir teilen unser Wissen und unsere Erfahrungen auf breiter Basis mit Nachwuchsforschern, indem wir die erste&#160;frei verfügbare Online-Lernplattform aufbauen, auf der jeder systematisch erlernen kann, wie&#160; man&#160;multimodale Daten, KI und Simulation für landwirtschaftliche Anwendungen integriert.&#160;</p> </div> <div class="ExternalClassF87B2B5F735944EFA5357C7FEDB2D7C3"><div> <img src="https&#58;//www.zalf.de/de/forschung_lehre/projekte/PublishingImages/KIKompAG_F%C3%B6rderhinweis%20EU_horizontal.jpg" alt="funding notice EU" style="margin&#58;5px;width&#58;200px;height&#58;52px;" /> <img src="https&#58;//www.zalf.de/de/forschung_lehre/projekte/PublishingImages/KIKompAG_F%C3%B6rderhinweis%20BMBF.jpg" alt="funding notice BMBF" style="margin&#58;5px;width&#58;200px;" /> <br> </div><p>The main objective of KIKompAg is to develop a coherent approach for integrating multimodal data, AI and simulation methods to characterise agricultural systems across scales and, building on this, to create a comprehensive curriculum covering several aspects of agroecosystem analysis with data from multiple sources. The framework combines state-of-the-art remote and close sensing products with various deep learning and mechanistic models, as well as diverse surface and subsurface reference datasets for both cropland and grassland​. We are sharing our knowledge and experience broadly with early career researchers by building the first freely available online learning platform where anyone can systematically learn how to use&#160;integrate multimodal data, AI and simulation for agricultural applications.&#160;</p> </div> KIKompAg <div class="ExternalClass72A8D042-6CDF-4E38-B663-369FA0A19D0B"></div> <div class="ExternalClassB4F33A07-2441-4781-958A-7958AB5D154A"></div> <div class="ExternalClass6A7CAC96-9E4F-4EF8-8A32-66963623F8EF"><ul><li>BMBF-Verbundprojekte</li></ul></div> <div class="ExternalClass129A9DA3-B823-4714-A8A9-9B60877239A7"><ul><li>VDI/VDE Innovation + Technik GmbH. PT Innovations- und Technikanalysen +</li></ul></div> <div class="ExternalClass0BE9A8CA-C873-4B86-A4F9-6E356D84560A"></div><div class="ExternalClassF0680CEEC07949BC9AE63018F5016489"><div> <img src="https&#58;//www.zalf.de/de/forschung_lehre/projekte/PublishingImages/KIKompAG_F%C3%B6rderhinweis%20EU_horizontal.jpg" alt="Förderhinweis EU" style="margin&#58;5px;width&#58;200px;height&#58;52px;" />​<img src="https&#58;//www.zalf.de/de/forschung_lehre/projekte/PublishingImages/KIKompAG_F%C3%B6rderhinweis%20BMBF.jpg" alt="Förderhinweis BMBF" style="margin&#58;5px;width&#58;200px;" /><br></div><p></p> <p>Das Hauptziel von KIKompAg ist die Entwicklung eines kohärenten Konzepts für die Integration&#160;von multimodalen Daten, KI- und Simulationsmethoden zur skalenübergreifend Charakterisierung&#160;landwirtschaftlicher Systeme und, darauf aufbauend, die Erstellung eines umfassenden&#160;Lehrplans, der mehrere Aspekte der Analyse von Agrarökosystemen mit Daten aus multiplen&#160;Quellen abdeckt. Das Framework kombiniert modernste Fern- und Naherkundungsprodukte mit&#160;verschiedenen Deep Learning- und mechanistischen Modellen sowie diversen ober- und&#160;unterirdischen Referenzdatensätzen sowohl für Acker- als auch für Grünland. Wir teilen unser Wissen und unsere Erfahrungen auf breiter Basis mit Nachwuchsforschern, indem wir die erste&#160;frei verfügbare Online-Lernplattform aufbauen, auf der jeder systematisch erlernen kann, wie&#160; man&#160;multimodale Daten, KI und Simulation für landwirtschaftliche Anwendungen integriert.&#160;</p> </div><div class="ExternalClassF87B2B5F735944EFA5357C7FEDB2D7C3"><div> <img src="https&#58;//www.zalf.de/de/forschung_lehre/projekte/PublishingImages/KIKompAG_F%C3%B6rderhinweis%20EU_horizontal.jpg" alt="funding notice EU" style="margin&#58;5px;width&#58;200px;height&#58;52px;" /> <img src="https&#58;//www.zalf.de/de/forschung_lehre/projekte/PublishingImages/KIKompAG_F%C3%B6rderhinweis%20BMBF.jpg" alt="funding notice BMBF" style="margin&#58;5px;width&#58;200px;" /> <br> </div><p>The main objective of KIKompAg is to develop a coherent approach for integrating multimodal data, AI and simulation methods to characterise agricultural systems across scales and, building on this, to create a comprehensive curriculum covering several aspects of agroecosystem analysis with data from multiple sources. The framework combines state-of-the-art remote and close sensing products with various deep learning and mechanistic models, as well as diverse surface and subsurface reference datasets for both cropland and grassland​. We are sharing our knowledge and experience broadly with early career researchers by building the first freely available online learning platform where anyone can systematically learn how to use&#160;integrate multimodal data, AI and simulation for agricultural applications.&#160;</p> </div>  <div class="ExternalClass39E8D8A1-A256-489C-AC37-B4F425A5ACA8">Dr. Gohar Ghazaryan; Prof. Dr. Masahiro Ryo</div>Nendel, Claas<div class="ExternalClass46768EFE-40E7-4BA9-A2FD-67A59D3F3356">Prof. Dr. Claas Nendel</a></div>     <div class="ExternalClass6A7CAC96-9E4F-4EF8-8A32-66963623F8EF"><ul><li>BMBF-Verbundprojekte</li></ul></div> VDI/VDE Innovation + Technik GmbH. PT Innovations- und Technikanalysen +<div class="ExternalClass129A9DA3-B823-4714-A8A9-9B60877239A7"><ul><li>VDI/VDE Innovation + Technik GmbH. PT Innovations- und Technikanalysen +</li></ul></div> 22 <div class="ExternalClassCEF3A2AC-E257-457F-AF90-3458BA873669"><ul><li>Landschaftsmodellierung</li><li>Ökosystemmodellierung</li><li>Künstliche Intelligenz für Digitale Landwirtschaft</li></ul></div><div class="ExternalClass5F864944-5851-412A-B25D-E95A09B13A39"><ul><li>Landscape Modelling</li><li>Ecosystem Modelling</li><li>Artificial Intelligence for Smart Agriculture</li></ul></div>
Fusszeile der Seite
Wordpress
YouTube
Twitter
© Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e. V. Müncheberg

Gefördert von:

BMEL-Logo
MWFK Logo