Skip Ribbon Commands
Skip to main content
Suche
Breadcrumb Navigation

Project Details

Hauptinhalt der Seite
idTitel_deuTitel_engProjekt_StartProjekt_EndeProjektstatusProjektstatus_enZALF_InstituteZALF_Institute_enIdxiZALF_PersonenIdxpLabelDetailsHomepageStartjahrSuchfeldZielsetzung_deuZielsetzung_engZALF_Institute_htmlZALF_Istitute_ENG_htmlZALF_Personen_htmlProjektleiterProjekt_Leiter_htmlProgrammbereich_htmlProgrammbereich_eng_htmlIdx_ProgrambereichProjektpartner_htmlIdx_ProjektpartnerFoerderer_htmlSchlagworteProjekttraegerProjekttraeger_htmlProjektmitarbeiter_extern_htmlProjektstatus_SortProjektstatus_en_SortAnlagenBereiche_ZALF_deBereiche_ZALF_en
2329KIKompAG - Multi-modale Datenintegration, domänenspezifische Methoden und KI zur Stärkung der Datenkompetenz in der AgrarforschungKIKompAG - Multi-modal data integration, domain-specific methods and AI to strengthen data literacy in agricultural research01/10/2022 00:00:0030/09/2025 00:00:00laufendcurrentProgrammbereich 4 "Simulations- und Datenwissenschaften" Research Area 4 "Simulation and Data Science"x94x32x31x83xRyo, Masahiro; Ghazaryan, Goharx2732x2781x<div class='ntm_PB4'>PB4</div>  2022 KIKompAG - Multi-modale Datenintegration, domänenspezifische Methoden und KI zur Stärkung der Datenkompetenz in der Agrarforschung KIKompAG - Multi-modal data integration, domain-specific methods and AI to strengthen data literacy in agricultural research Programmbereich 4 "Simulations- und Datenwissenschaften" Ryo, Masahiro; Ghazaryan, Gohar Drittmittel Research Area 4 "Simulation and Data Science" current laufend <div class="ExternalClassF0680CEEC07949BC9AE63018F5016489"><div> <img src="https&#58;//www.zalf.de/de/forschung_lehre/projekte/PublishingImages/KIKompAG_F%C3%B6rderhinweis%20EU_horizontal.jpg" alt="Förderhinweis EU" style="margin&#58;5px;width&#58;200px;height&#58;52px;" />​<img src="https&#58;//www.zalf.de/de/forschung_lehre/projekte/PublishingImages/KIKompAG_F%C3%B6rderhinweis%20BMBF.jpg" alt="Förderhinweis BMBF" style="margin&#58;5px;width&#58;200px;" /><br></div><p></p> <p>Das Hauptziel von KIKompAg ist die Entwicklung eines kohärenten Konzepts für die Integration&#160;von multimodalen Daten, KI- und Simulationsmethoden zur skalenübergreifend Charakterisierung&#160;landwirtschaftlicher Systeme und, darauf aufbauend, die Erstellung eines umfassenden&#160;Lehrplans, der mehrere Aspekte der Analyse von Agrarökosystemen mit Daten aus multiplen&#160;Quellen abdeckt. Das Framework kombiniert modernste Fern- und Naherkundungsprodukte mit&#160;verschiedenen Deep Learning- und mechanistischen Modellen sowie diversen ober- und&#160;unterirdischen Referenzdatensätzen sowohl für Acker- als auch für Grünland. Wir teilen unser Wissen und unsere Erfahrungen auf breiter Basis mit Nachwuchsforschern, indem wir die erste&#160;frei verfügbare Online-Lernplattform aufbauen, auf der jeder systematisch erlernen kann, wie&#160; man&#160;multimodale Daten, KI und Simulation für landwirtschaftliche Anwendungen integriert.&#160;</p> </div> <div class="ExternalClassF87B2B5F735944EFA5357C7FEDB2D7C3"><div> <img src="https&#58;//www.zalf.de/de/forschung_lehre/projekte/PublishingImages/KIKompAG_F%C3%B6rderhinweis%20EU_horizontal.jpg" alt="funding notice EU" style="margin&#58;5px;width&#58;200px;height&#58;52px;" /> <img src="https&#58;//www.zalf.de/de/forschung_lehre/projekte/PublishingImages/KIKompAG_F%C3%B6rderhinweis%20BMBF.jpg" alt="funding notice BMBF" style="margin&#58;5px;width&#58;200px;" /> <br> </div><p>The main objective of KIKompAg is to develop a coherent approach for integrating multimodal data, AI and simulation methods to characterise agricultural systems across scales and, building on this, to create a comprehensive curriculum covering several aspects of agroecosystem analysis with data from multiple sources. The framework combines state-of-the-art remote and close sensing products with various deep learning and mechanistic models, as well as diverse surface and subsurface reference datasets for both cropland and grassland​. We are sharing our knowledge and experience broadly with early career researchers by building the first freely available online learning platform where anyone can systematically learn how to use&#160;integrate multimodal data, AI and simulation for agricultural applications.&#160;</p> </div> KIKompAg <div class="ExternalClass6A73F941-F11D-42D4-8BF5-CF8834987F2F"></div> <div class="ExternalClass94AE89D2-6657-40A7-B594-1D14226FAB50"></div> <div class="ExternalClassF0DEF78B-2C8E-4AB6-ADCC-C55A4AC57745"><ul><li>BMBF-Verbundprojekte</li></ul></div> <div class="ExternalClassD89765EB-6A22-46CE-888A-BE4B4DA1E5D4"><ul><li>VDI/VDE Innovation + Technik GmbH. PT Innovations- und Technikanalysen +</li></ul></div> <div class="ExternalClass6FF9E7B9-4C8F-439C-9B9C-2CF1B93B87EA"></div><div class="ExternalClassF0680CEEC07949BC9AE63018F5016489"><div> <img src="https&#58;//www.zalf.de/de/forschung_lehre/projekte/PublishingImages/KIKompAG_F%C3%B6rderhinweis%20EU_horizontal.jpg" alt="Förderhinweis EU" style="margin&#58;5px;width&#58;200px;height&#58;52px;" />​<img src="https&#58;//www.zalf.de/de/forschung_lehre/projekte/PublishingImages/KIKompAG_F%C3%B6rderhinweis%20BMBF.jpg" alt="Förderhinweis BMBF" style="margin&#58;5px;width&#58;200px;" /><br></div><p></p> <p>Das Hauptziel von KIKompAg ist die Entwicklung eines kohärenten Konzepts für die Integration&#160;von multimodalen Daten, KI- und Simulationsmethoden zur skalenübergreifend Charakterisierung&#160;landwirtschaftlicher Systeme und, darauf aufbauend, die Erstellung eines umfassenden&#160;Lehrplans, der mehrere Aspekte der Analyse von Agrarökosystemen mit Daten aus multiplen&#160;Quellen abdeckt. Das Framework kombiniert modernste Fern- und Naherkundungsprodukte mit&#160;verschiedenen Deep Learning- und mechanistischen Modellen sowie diversen ober- und&#160;unterirdischen Referenzdatensätzen sowohl für Acker- als auch für Grünland. Wir teilen unser Wissen und unsere Erfahrungen auf breiter Basis mit Nachwuchsforschern, indem wir die erste&#160;frei verfügbare Online-Lernplattform aufbauen, auf der jeder systematisch erlernen kann, wie&#160; man&#160;multimodale Daten, KI und Simulation für landwirtschaftliche Anwendungen integriert.&#160;</p> </div><div class="ExternalClassF87B2B5F735944EFA5357C7FEDB2D7C3"><div> <img src="https&#58;//www.zalf.de/de/forschung_lehre/projekte/PublishingImages/KIKompAG_F%C3%B6rderhinweis%20EU_horizontal.jpg" alt="funding notice EU" style="margin&#58;5px;width&#58;200px;height&#58;52px;" /> <img src="https&#58;//www.zalf.de/de/forschung_lehre/projekte/PublishingImages/KIKompAG_F%C3%B6rderhinweis%20BMBF.jpg" alt="funding notice BMBF" style="margin&#58;5px;width&#58;200px;" /> <br> </div><p>The main objective of KIKompAg is to develop a coherent approach for integrating multimodal data, AI and simulation methods to characterise agricultural systems across scales and, building on this, to create a comprehensive curriculum covering several aspects of agroecosystem analysis with data from multiple sources. The framework combines state-of-the-art remote and close sensing products with various deep learning and mechanistic models, as well as diverse surface and subsurface reference datasets for both cropland and grassland​. We are sharing our knowledge and experience broadly with early career researchers by building the first freely available online learning platform where anyone can systematically learn how to use&#160;integrate multimodal data, AI and simulation for agricultural applications.&#160;</p> </div>  <div class="ExternalClassE50B4956-A491-47E0-A4C7-23D4CCE0E965">Dr. Gohar Ghazaryan; Prof. Dr. Masahiro Ryo</div>Nendel, Claas<div class="ExternalClass6D3AFB94-7209-46DE-BF43-A917589491DA">Prof. Dr. Claas Nendel</a></div>     <div class="ExternalClassF0DEF78B-2C8E-4AB6-ADCC-C55A4AC57745"><ul><li>BMBF-Verbundprojekte</li></ul></div> VDI/VDE Innovation + Technik GmbH. PT Innovations- und Technikanalysen +<div class="ExternalClassD89765EB-6A22-46CE-888A-BE4B4DA1E5D4"><ul><li>VDI/VDE Innovation + Technik GmbH. PT Innovations- und Technikanalysen +</li></ul></div> 22 <div class="ExternalClass7D701C1D-0468-4309-ACAF-55B18A26628B"><ul><li>Landschaftsmodellierung</li><li>Ökosystemmodellierung</li><li>Künstliche Intelligenz für Digitale Landwirtschaft</li></ul></div><div class="ExternalClass1B034727-BD6E-46BA-96B4-AA7046C2F92E"><ul><li>Landscape Modelling</li><li>Ecosystem Modelling</li><li>Artificial Intelligence for Smart Agriculture</li></ul></div>
Fusszeile der Seite
Wordpress
YouTube
Twitter
© Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e. V. Müncheberg

Funded by:

BMEL logo
MWFK logo