Skip Ribbon Commands
Skip to main content
Suche
Breadcrumb Navigation

Project Details

Hauptinhalt der Seite
idTitel_deuTitel_engProjekt_StartProjekt_EndeProjektstatusProjektstatus_enZALF_InstituteZALF_Institute_enIdxiZALF_PersonenIdxpLabelDetailsHomepageStartjahrSuchfeldZielsetzung_deuZielsetzung_engZALF_Institute_htmlZALF_Istitute_ENG_htmlZALF_Personen_htmlProjektleiterProjekt_Leiter_htmlProgrammbereich_htmlProgrammbereich_eng_htmlIdx_ProgrambereichProjektpartner_htmlIdx_ProjektpartnerFoerderer_htmlSchlagworteProjekttraegerProjekttraeger_htmlProjektmitarbeiter_extern_htmlProjektstatus_SortProjektstatus_en_SortAnlagenBereiche_ZALF_deBereiche_ZALF_en
2289Ökohydrologische Konnektivität zwischen Bäumen und der Kapillarzone - Schlüsselfunktion für die Trockenheitsresilienz Europäi-scher Wälder?Ecohydrological connectivity between trees and the capillary zone - a key driver for drought resilience of European forests? 01/06/2022 00:00:0031/05/2026 00:00:00laufendcurrentProgrammbereich 1 „Landschaftsprozesse“Research Area 1 „Landscape Functioning“x3x12xDubbert, Maren; Rohde, Clara; Demir, Gökbenx2777x3120x3267x<div class='ntm_PB1'>PB1</div>  2022 Ökohydrologische Konnektivität zwischen Bäumen und der Kapillarzone - Schlüsselfunktion für die Trockenheitsresilienz Europäi-scher Wälder? Ecohydrological connectivity between trees and the capillary zone - a key driver for drought resilience of European forests? Programmbereich 1 „Landschaftsprozesse“ Dubbert, Maren; Rohde, Clara; Demir, Gökben Drittmittel Research Area 1 „Landscape Functioning“ current laufend <div class="ExternalClassC821A5EB63FA44E1B7486060B289E31D"><p>​Das zentrale Ziel unseres Projekts ist die Quantifizierung der raumzeitlichen Dynamik und der Rückkopplungen zwischen Niederschlagsinfiltration und Kapillaraufstieg aus dem Grundwasser, das die Kapillarzone auffüllt, sowie die Wechselwirkung typischer europäischer Waldbäume mit ausgeprägten Wassernutzungsstrategien und Durchwurzelungstiefen mit den tiefen Bodenwasserbecken. Wir gehen davon aus, dass die Aufrechterhaltung der Verbindung zur Kapillarzone für einige Arten eine entscheidende Komponente der Dürretoleranz ist. Die quantitative Auswirkung der Konnektivität der Bäume mit der Kapillarzone wird jedoch weitgehend von I) klimatischen und geomorphologischen Bedingungen abhängen, die die raumzeitliche Dynamik der Kapillarzonenkonnektivität definieren (Dürredauer, Pufferkapazität der Kapillarzone) und II) artspezifischen Dürreanpassungen (Wurzeltiefen). , adaptives Wurzelwachstum, Grad der Isohydrizität).</p></div> <div class="ExternalClass553DE2EAC43C48C0BF5718E1F9CC4C8C"><p> <strong>The central aim of our project</strong> is to quantify spatiotemporal dynamics and feedbacks between precipitation infiltration and capillary rise from groundwater replenishing the capillary zone as well the interaction of typical European forest trees with distinct water-use strategies and rooting depth with the deep soil water pools.<strong> We hypothesize </strong>that <strong> <em>maintaining connectivity to the capillary zone is for some species a critical component of drought tolerance</em></strong>. However, the quantitative impact of tree connectivity to the capillary zone will depend largely on I) <strong> <em>climate and geomorphological conditions that define spatiotemporal dynamics of capillary zone connectivity (drought duration, capillary zone buffer capacity) and II) species-specific drought adaptations (rooting depths, adaptive root growth, degree of isohydricity)</em></strong>.</p><p>To fully understand the impact of tree connectivity to the capillary zone on tree and forest health as well as hydrological cycling we aim to use a combination of ecohydrological, plant physiological, geophysical, and model-based approaches (for an overview see Fig. 1). We will investigate our central aim and hypothesis in a combined experimental (WP 1-3) and modelling approach (WP 4). Hillslope transects are ideally suited to study these interactions, as they provide gradients of groundwater table and capillary zone depth within the same local climate, soils are generally not very deep and thus easier to study (see Figure 3 for a schematic overview).</p><p>Therefore, the experimental approach will center on a field experiment along hillslope transects (established in <strong>WP1</strong>) naturally creating a gradient of groundwater table and capillary zone depth. A particular focus will be on the novel continuous stable water isotope observation platform creating a high spatiotemporally resolved dataset including soil, xylem, and atmospheric water vapor (<strong>WP2</strong>) complemented by tree ring oxygen isotopic and phloem carbon isotopic data. This combination will allow us to draw conclusions not only on current tree connectivity to the capillary zone and spatio-temporal dynamics of deep soil water use by different tree species but also its impacts on carbon sequestration, allowing the analysis of historic drought events. In <strong>WP3 </strong>we will quantify key physiological (single-tree to stand-scale transpiration and net carbon uptake; stomatal conductance; tree water potentials) and phenological parameters (leaf area index, stem diameter growth, rooting depth, root biomass distribution, root growth) to assess water use, productivity and drought mitigation strategies. We will focus on typical shallow- and-deep rooted Central European forest tree species&#58; beech (<em>Fagus sylvatica</em>), oak (<em>Quercus spp.</em>), and spruce (<em>Picea abies</em>). In <strong>WP4</strong>, the isotope enabled SVAT model MuSICA will be used to predict the relationship between deep-water uptake (monitored via tree ring isotopic signatures) and tree health. In addition to our central monitoring field site (WP1-3) we have the unique opportunity to parameterize two additional test sites spanning a climatic gradient from temperate boreal (Svartberget, Sweden) over temperate humid to temperate Mediterranean (Re della Pietra, Italy). For these additional test sites, our team of international collaboration partners can provide sufficiently detailed data (complemented by selective sampling such as tree ring analysis) <strong>to provide a continental-scale context for the results from our study.</strong></p></div> Confor <div class="ExternalClass067A50A4-3EE6-4A94-A2BF-2C18B9C16A13"></div> <div class="ExternalClass8A2BA47F-DBB2-47D5-BD7A-67F514A8EAA8"></div> <div class="ExternalClass28E58C3C-099D-4E6C-97B7-05142665FCCD"></div> <div class="ExternalClass1A4AEA79-8CA3-4110-839D-DCF2FCAB16D3"><ul><li>DFG Deutsche Forschungsgemeinschaft</li></ul></div> <div class="ExternalClassD156B03D-CF58-472D-8BB1-549A08AF6FE8"></div><div class="ExternalClassC821A5EB63FA44E1B7486060B289E31D"><p>​Das zentrale Ziel unseres Projekts ist die Quantifizierung der raumzeitlichen Dynamik und der Rückkopplungen zwischen Niederschlagsinfiltration und Kapillaraufstieg aus dem Grundwasser, das die Kapillarzone auffüllt, sowie die Wechselwirkung typischer europäischer Waldbäume mit ausgeprägten Wassernutzungsstrategien und Durchwurzelungstiefen mit den tiefen Bodenwasserbecken. Wir gehen davon aus, dass die Aufrechterhaltung der Verbindung zur Kapillarzone für einige Arten eine entscheidende Komponente der Dürretoleranz ist. Die quantitative Auswirkung der Konnektivität der Bäume mit der Kapillarzone wird jedoch weitgehend von I) klimatischen und geomorphologischen Bedingungen abhängen, die die raumzeitliche Dynamik der Kapillarzonenkonnektivität definieren (Dürredauer, Pufferkapazität der Kapillarzone) und II) artspezifischen Dürreanpassungen (Wurzeltiefen). , adaptives Wurzelwachstum, Grad der Isohydrizität).</p></div><div class="ExternalClass553DE2EAC43C48C0BF5718E1F9CC4C8C"><p> <strong>The central aim of our project</strong> is to quantify spatiotemporal dynamics and feedbacks between precipitation infiltration and capillary rise from groundwater replenishing the capillary zone as well the interaction of typical European forest trees with distinct water-use strategies and rooting depth with the deep soil water pools.<strong> We hypothesize </strong>that <strong> <em>maintaining connectivity to the capillary zone is for some species a critical component of drought tolerance</em></strong>. However, the quantitative impact of tree connectivity to the capillary zone will depend largely on I) <strong> <em>climate and geomorphological conditions that define spatiotemporal dynamics of capillary zone connectivity (drought duration, capillary zone buffer capacity) and II) species-specific drought adaptations (rooting depths, adaptive root growth, degree of isohydricity)</em></strong>.</p><p>To fully understand the impact of tree connectivity to the capillary zone on tree and forest health as well as hydrological cycling we aim to use a combination of ecohydrological, plant physiological, geophysical, and model-based approaches (for an overview see Fig. 1). We will investigate our central aim and hypothesis in a combined experimental (WP 1-3) and modelling approach (WP 4). Hillslope transects are ideally suited to study these interactions, as they provide gradients of groundwater table and capillary zone depth within the same local climate, soils are generally not very deep and thus easier to study (see Figure 3 for a schematic overview).</p><p>Therefore, the experimental approach will center on a field experiment along hillslope transects (established in <strong>WP1</strong>) naturally creating a gradient of groundwater table and capillary zone depth. A particular focus will be on the novel continuous stable water isotope observation platform creating a high spatiotemporally resolved dataset including soil, xylem, and atmospheric water vapor (<strong>WP2</strong>) complemented by tree ring oxygen isotopic and phloem carbon isotopic data. This combination will allow us to draw conclusions not only on current tree connectivity to the capillary zone and spatio-temporal dynamics of deep soil water use by different tree species but also its impacts on carbon sequestration, allowing the analysis of historic drought events. In <strong>WP3 </strong>we will quantify key physiological (single-tree to stand-scale transpiration and net carbon uptake; stomatal conductance; tree water potentials) and phenological parameters (leaf area index, stem diameter growth, rooting depth, root biomass distribution, root growth) to assess water use, productivity and drought mitigation strategies. We will focus on typical shallow- and-deep rooted Central European forest tree species&#58; beech (<em>Fagus sylvatica</em>), oak (<em>Quercus spp.</em>), and spruce (<em>Picea abies</em>). In <strong>WP4</strong>, the isotope enabled SVAT model MuSICA will be used to predict the relationship between deep-water uptake (monitored via tree ring isotopic signatures) and tree health. In addition to our central monitoring field site (WP1-3) we have the unique opportunity to parameterize two additional test sites spanning a climatic gradient from temperate boreal (Svartberget, Sweden) over temperate humid to temperate Mediterranean (Re della Pietra, Italy). For these additional test sites, our team of international collaboration partners can provide sufficiently detailed data (complemented by selective sampling such as tree ring analysis) <strong>to provide a continental-scale context for the results from our study.</strong></p></div>  <div class="ExternalClassAC8D9921-AEB2-4361-8B7F-5729A56FD0E4">Dr. Gökben Demir; Dr. habil. Maren Dubbert; Clara Rohde</div>Dubbert, Maren<div class="ExternalClass9716D79A-23A3-455A-91EE-C42B9B7F87E7">Dr. habil. Maren Dubbert</a></div>       DFG - Deutsche Forschungsgemeinschaft<div class="ExternalClass1A4AEA79-8CA3-4110-839D-DCF2FCAB16D3"><ul><li>DFG Deutsche Forschungsgemeinschaft</li></ul></div> 22 <div class="ExternalClass394A8BFC-EBB6-4307-B2C7-F1FBD021BF4A"><ul><li>Isotopen-Biogeochemie & Gasflüsse</li></ul></div><div class="ExternalClass127C70B4-91FE-461C-A0C4-AA250D2EF645"><ul><li>Isotope Biogeochemistry & Gas Fluxes</li></ul></div>
Fusszeile der Seite
Wordpress
YouTube
Twitter
© Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e. V. Müncheberg

Funded by:

BMEL logo
MWFK logo