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Drought intensity and duration interact to

magnify losses in primary productivity
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As droughts become longer and more intense, impacts on terrestrial primary productivity are expected to increase progressively. Yet, some
ecosystems appear to acclimate to multiyear drought, with constant or diminishing reductions in productivity as drought duration increases.
We quantified the combined effects of drought duration and intensity on aboveground productivity in 74 grasslands and shrublands
distributed globally. Ecosystem acclimation with multiyear drought was observed overall, except when droughts were extreme (i.e., <1-in-100-
year likelihood of occurrence). Productivity losses after four consecutive years of extreme drought increased by ~2.5-fold compared with
those of the first year. These results portend a foundational shift in ecosystem behavior if drought duration and intensity increase, from
maintenance of reduced functioning over time to progressive and profound losses of productivity when droughts are extreme.

Drought, defined meteorologically as “a prolonged absence or marked
deficiency of precipitation” (7), is a frequent and impactful disturbance
in many terrestrial ecosystems globally. Although most droughts are
short term and moderate in intensity (2), the most damaging and
costly droughts from the perspective of ecological, societal, and
economic impacts are both prolonged, unfolding over multiple
years, and extreme with respect to long-term variation in climate
conditions [e.g., (3,4)]. Although such drought events have historically
occurred infrequently and, in some places, are absent from the recent
historical record (2, 5), there is evidence that longer-duration, intensi-
fied droughts are becoming more common (6, 7) and will further in-
crease in magnitude and frequency with global climate change (5, 8, 9).
Yet, the impacts of multiyear, extreme droughts remain understudied,
and past research is equivocal for how long-term droughts impact
terrestrial ecosystems (2).

Theory predicts that as drought duration increases, the impacts of
drought on ecosystem functioning (e.g., primary production) should
accumulate or be magnified over time, resulting in more substantial
losses in functioning, even for ecosystems that appear resistant to
short-term drought (2, 10). Several past studies report this expected
cumulative pattern of response: a progressively more negative effect
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of drought on ecosystem functioning as duration increases (11, 12).
However, others find little evidence that increasing drought duration
reduces functioning beyond that of a single-year drought [e.g., (13-15)].
Indeed, some research suggests that ecosystem function can “acclimate”
or stabilize in response to multiyear drought [ i.e., ecosystem acclimation;
(16)], characterized by the impacts of drought remaining relatively
constant or even diminishing over time (11, 16-19). These variable
responses to drought duration may result from differences in the mag-
nitude (or intensity) of drought imposed. Indeed, drought duration
and intensity are expected to interact in important ways (2, 10). Droughts
that are both prolonged and extreme are more likely to result in large
impacts on ecosystem functioning (10, 20, 21). By contrast, short-term
drought or prolonged moderate drought may result in lesser impacts
on ecosystem functioning than extreme drought (10, 13, 15). Thus,
to fully understand patterns of ecosystem response to drought duration,
we need to also assess its interaction with drought intensity.

Our goals for this study were to 1) determine if prolonged drought
results in a pattern of ecosystem response consistent with ecosystem
acclimation (constant or lessening over time) vs. progressive
losses (continuous decline over time), 2) quantify losses of ecosystem
function attributable to each pattern, and 3) assess whether these
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patterns of loss change with the magnitude of drought imposed. We  The International Drought Experiment

achieved these goals with results from the International Drought The International Drought Experiment (IDE) is a coordinated drought
Experiment (IDE), a multiyear global-scale study of drought effects on  experiment established in grassland and shrubland ecosystems across
aboveground net primary productivity (hereafter referred to as “pro-  the globe [Fig. 1A and table S1; (23)]. These ecosystems cover ~40% of
ductivity”), a key measure of ecosystem functioning and a major com-  Earth’s land surface, provide crucial ecosystem services [e.g., food, forage,
ponent of the terrestrial carbon cycle (22). fiber (24, 25)], and their productivity is among the most responsive to
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Fig. 1. Overview of the IDE: geographic locations, drought treatments, and effects on aboveground
productivity. (A) Locations of the 74 IDE sites included in this study and their distribution across six
continents (site names are given in table S1). Background shading denotes Moderated Resolution Imaging
Spectroradiometer—derived landcover types (50), and the colors of the points denote the vegetation type of
each site: annual, herbaceous perennial, or woody perennial (23). (B) (Left) IDE sites ordered by the average
productivity response to drought over the 3- to 4-year duration of the experiment. Error bars represent the
standard error for each site. (Middle) The average drought severity [defined as (MAP — precipitation received
by drought treatment plots)/MAP; (23)] experienced over the duration of the experiment (blue bars). The
expected average drought severity for the target 1-in-100-year drought treatment is indicated by the vertical
black line. Overall, 53% of sites experienced an average precipitation reduction equivalent to the level
expected with the target 1-in-100—year extreme drought treatment over the duration of the experiment.
(Right) The temporal sequence of extreme (orange) versus moderate (gray) drought years imposed at each
site. Note that 21 sites imposed only 3 years of drought treatment, and, therefore, the designation for the
fourth year of treatment is left empty (white). (C) Average productivity response to drought (moderate and
extreme combined) over time for three vegetation types. Productivity response was calculated as the

natural log of the ratio of productivity during drought to long-term mean productivity (23). For example, a
productivity response of -1 equates to a change in productivity due to drought of about 63% of the long-term
mean. Error bars represent standard error, and letters denote statistical differences among groups based

on a linear mixed effect model and post hoc comparison (table S3).
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precipitation variability [e.g., (26)]. IDE sites were
established on six continents and span broad pre-
cipitation, temperature, and environmental gradi-
ents [Fig. 1A and table S1; (27, 28)]. All IDE sites
utilize a common experimental approach: passive
rainfall manipulation shelters (29) that simulated
year-round drought [365 days; (27)] for up to 4 years.
This allows for drought-duration impacts to be
assessed in a cost-effective manner while still repre-
senting Key characteristics of natural drought events
[i.e., smaller and fewer rainfall events accompanied
by longer periods between rainfall events; (29)]. At
the time of this analysis, there were 74 grassland and
shrubland IDE sites that had imposed 3 (n = 21) or
4 (n = 53) years of drought (Fig. 1B).

In addition to drought duration, IDE was de-
signed to capture another way in which drought
events are changing: increased intensity (or magni-
tude). To accomplish this, we selected a statistically
extreme target level of drought intensity tailored for
each IDE site: a 1-in-100-year drought based on
long-term annual precipitation amounts available
from site-level historical records (Fig. 1B) (23). By
choosing this target level, our intent was to impose
a scenario of extreme drought that is currently pre-
dicted to become more common with climate
change in the near future, yet not so extreme as to
be unrealistic [e.g., a 1-in-100-year drought will be-
come more common well before a 1-in-1000-year
drought does; (30)]. Thus, the goal with IDE was to
apply drought treatments that (i) were historically
and statistically rare for most if not all sites in-
cluded in our study but also (ii) are forecast to be-
come more common with climate change (31).

The IDE passive rainfall manipulation shelters
rely on ambient precipitation to achieve drought
(29). However, because ambient precipitation var-
ied each year of the study, the target 1-in-100-year
drought treatment was realized only when ambient
rainfall was less than or equal to mean annual pre-
cipitation (MAP) for a site (23). When this criterion
was met, we categorized the drought treatment as
“extreme” [following (27)]. By contrast, when ambi-
ent annual rainfall was greater than MAP for a site,
the target 1-in-100-year drought was not met, but
drought was still imposed. For this scenario, we
categorized the drought treatment as “moderate.”
The extreme and moderate categories of drought
intensity align with those used in well-recognized
drought classification systems, such as the US
Drought Monitor (23). We also quantified the IDE
drought treatments as a continuous variable using
a common and comparable drought severity metric
(32), calculated as the relative reduction in rainfall
in the drought treatment from MAP (23). Average
drought severity was substantially greater (~60%)
for the extreme versus moderate drought intensity
categories (fig. S1). An additional feature of the IDE
design is that, in any given year, approximately half
of the sites experienced extreme, 1-in-100-year
drought, and after multiple years, sites experienced
different combinations of moderate and extreme
drought years (Fig. 1B). This allowed us to contrast
distinct sequences of moderate and extreme drought
impacts over multiple years.
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Variability in drought response over time
Previously, we showed that average productivity reductions were ~60%
greater when a single-year drought was extreme versus not extreme;
however, variability among IDE sites in their response to short-term
drought was notably high, ranging from complete resistance (i.e., no
reduction in productivity) to large declines in productivity (27). Much
of this variability in response was related to variation in drought severity,
with productivity decreasing, as expected, with increasing drought
severity (27). As drought duration was increased from 1 to 4 years in
this study, we expected that variation in productivity responses among
sites would decrease. However, average productivity responses to mul-
tiple (3 to 4) years of drought remained notably variable, ranging from
little response to as much as a 97% decline in productivity (Fig. 1B).
We examined a broad set of biotic and abiotic variables previously
hypothesized to explain variation in drought response (23), including
differences in plant species richness, abundance of key growth forms
(i.e., graminoids), soil texture, MAP, mean annual temperature, mean
aridity index (AI), interannual precipitation variability, precipitation
seasonality, and previous and current year drought severity (figs. S2
to S5 and table S2 ). We found that, as drought extended over multiple
years, previous years’ drought severity (years 2 and 3), MAP (years 2
to 4), mean Al (year 3), interannual variation (year 4) and seasonality
in precipitation (year 3), and plant species richness (years 1 and 4)
were major predictors of variation in drought response (figs. S2 to S5).
Thus, as found in other studies (27, 33), drier and less biodiverse sites,
as well as those with more variable or more seasonal precipitation,
experienced greater losses in productivity with drought. However, drought
severity was the best and most consistent predictor of variation
in drought response, as observed with single-year droughts (27).

Year 2

Year 1
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Pattern of productivity loss with multiyear drought

Despite variation in drought response among sites, we expected that a
pattern of progressive (or cumulative) losses of productivity would
emerge at most sites as drought continued over multiple years. After a
significant decline in productivity in the first year of drought (29%), when
averaged across all sites and drought intensity categories, productivity
did not continue to decrease over time (Fig. 1C and table S3). Instead,
ecosystem acclimation was generally observed. Notably, annual grass-
lands responded distinctly from perennial grasslands and shrublands,
exhibiting a much larger initial response, but with the response lessening
over time (table S3). Previous studies in annual-dominated systems have
also found similar responses as well as strong drought resistance (34, 35).
Unfortunately, given the small number of annual-dominated IDE sites
(n = 8) and their limited geographic coverage (seven were in the south-
western United States, and six experienced above-average precipitation
in year 4), it is difficult to draw substantive conclusions about the nature
of drought-duration effects based on these annual ecosystems. As such,
we focused all subsequent analyses on the more widely represented
perennial-dominated grassland and shrubland sites.

Interaction of drought duration and severity

The above analysis of drought duration effects does not consider inten-
sity (extreme versus moderate) of the drought imposed. However, we
expected that losses in productivity under extreme drought would be
magnified over time and most pronounced when drought intensity was
consistently extreme over multiple years. We tested this prediction in
four ways. First, we examined relationships between productivity re-
sponses and drought severity for each year of the drought using multi-
model comparisons that also included the previous year’s drought
severity to account for potential carry-over effects of the
severity of drought from one year to the next (23).

Consistent with simple linear regression analyses
(figs. S2 to S5 and table S2), the current year’s drought
severity was the best predictor of variation in productivity
response, regardless of ecosystem type or the previous
year’s drought severity (Fig. 2 and table S4). However,
this analysis does not consider whether drought intensity
was extreme or not. Therefore, we tested whether the
slope of the relationship between productivity responses
and drought severity would change depending on
o whether drought intensity was extreme versus moderate.
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and categorical variable when describing the productivity
response to drought over time. We found that, by year 3,
the relationship between drought severity and productiv-
ity responses differed significantly between moderate
versus extreme droughts, with the difference in these
relationships most pronounced in year 4 (Fig. 2 and ta-
ble S5). In other words, the slope of the relationship be-
tween drought severity and productivity loss became
more negative over time when the intensity of the
drought treatment was extreme, whereas the slope of the

| | 1
100 0 25 50

25 50 75
Drought severity (percent reduction of MAP)

Fig. 2. Relationships between ecosystem productivity response to drought and drought severity
across all sites (black line) and moderate (gray dots) versus extreme (orange dots) drought
intensities for each of the 4 years of the experiment. Productivity response was calculated as the
natural log of the ratio of productivity during drought to long-term mean productivity (23). Drought
severity was calculated as: (MAP - precipitation received by drought treatment plots)/MAP (23). The
regression across all sites was significant for all years (table S4). P values for moderate and extreme
regressions are shown in the bottom left corner of each panel (table S5): M, moderate regression; E,
extreme regression; MxE, the interaction between moderate and extreme regressions (i.e. whether the

slopes differ from each other).
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relationship for moderate intensity droughts did not
change significantly over time. Third, we assessed the
impact of extreme versus moderate drought intensity in
any given year during the 4-year period of precipitation
reductions, regardless of the previous year’s drought se-
verity. We found that average productivity losses signifi-
cantly increased over time when drought was extreme,
whereas the effects of moderate intensity droughts on
productivity were independent of the year in which they
occurred (Fig. 3A and table S6). Lastly, we quantified
productivity responses of sites that had experienced only
extreme drought for 1 to 4 years. For the subset of sites

|
75 100
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with such consecutive extreme drought years, the strongest duration
effects were revealed (Fig. 3B and table S7), with a ~2.5-fold greater loss
of productivity as duration increased from 1 to 4 years (a 29 versus 77%
reduction, respectively). Collectively, these results support predictions
that droughts of extreme intensity cause greater impacts on ecosystem
functioning than moderate droughts of similar duration (10). However,
most notably, we show that increasing drought duration concurrent with
consistently extreme drought results in progressive losses in ecosystem
functioning that are more profound than previously reported (71, 12).

Conclusions

Our results help to reconcile contrasting patterns of drought duration
responses reported previously. IDE results show that, after an initial loss
of function in year one, ecosystems subjected to multiple years of moder-
ate (or less severe) drought are likely to maintain this level of limited
functioning (i.e., exhibit ecosystem acclimation). By contrast, an increase
in severity to historically extreme levels will result in a pattern of cumu-
lative loss of function over time. There are several mechanisms that may
result in patterns of ecosystem acclimation versus cumulative effects of
drought (10, 20, 21), including demographic and community shifts result-
ing from mortality or establishment failure (leading to loss in function)
as well as plastic or adaptive responses to drought over time (leading to
mitigation of loss over time ). Although the IDE was not designed to rigor-
ously test such mechanisms, available data from 49 sites on species gains
and losses as well as changes in species richness suggest that demographic
and community shifts likely occurred (fig. S6A and tables S8 and S9), and
over time, greater species losses were significantly related to increased losses
in productivity with drought (fig. S6B and table S10). Although additional

A B

research will be required to test mechanisms that may determine acclima-
tion versus cumulative responses to drought, such mechanistic under-
standing is crucial in a future where extreme droughts become the norm.

The lack of duration effect with moderate drought intensity is not
entirely surprising, given that many grassland and shrubland ecosys-
tems occur in a broad range of semiarid to arid climates, as did a majority
of IDE sites (table S2). The ability of these water-limited systems to
rapidly respond to short-term fluctuations in precipitation (22, 36, 37)
but also maintain functioning for more extended dry periods is consis-
tent with the long-term stability of these ecosystems (38). Indeed, it is
also worth highlighting that a subset of sites was resistant to multiple
years of drought, regardless of severity. [t may be that these ecosystems
are less water limited (table S2) and therefore less impacted by drought, as
has been observed for mesic grasslands [e.g., (14,16)]. However, it should
also be noted that drought experiments may underestimate drought ef-
fects (39), and although passive rainout shelters alter precipitation inputs
and soil moisture in ways that accurately simulate changes in rainfall
during natural droughts (28), they do not reproduce ancillary drought
attributes, such as higher temperatures and vapor pressure deficits that
typically accompany drought events (40-42). Although direct tempera-
ture effects are not particularly strong in grasslands (43, 44), an in-
crease in vapor pressure deficits during drought has the potential to
reduce photosynthesis and productivity (45, 46), and the lack of a tem-
perature manipulation in this study could partially explain why some
IDE sites were unresponsive to drought over time.

The discovery that the resistance to drought duration of grasslands and
shrublands rapidly eroded with prolonged drought of extreme intensity
portends an uncertain future for these ecosystems, threatening their long-

term stability and the ecosystem goods and services they
provide. Particularly alarming were the 160%-greater (or
2.5-fold-greater) reductions in productivity observed when
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o
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extreme drought years occur consecutively. Extreme, con-
secutive drought years, including megadroughts (8), are ex
pected to increase in the future with climate change (8, 31).
Although concerns about ecosystem stability in the face of
ongoing increases in both drought magnitude and duration
have been voiced for decades (47, 48), our results provide
experimental evidence in support of recent observations (5)
that the functioning of these globally important ecosystems
are at risk from longer and more intense droughts.
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