CONTENT

<table>
<thead>
<tr>
<th>02</th>
<th>Preface</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>Core Topics</td>
</tr>
<tr>
<td>06</td>
<td>Solutions for the sustainable use of agricultural landscapes — Core Topics</td>
</tr>
</tbody>
</table>
| 07 | Core Topic I
 »Landscape Functioning« |
| 08 | Core Topic II
 »Land Use and Impacts« |
| 09 | Core Topic III
 »Land Use Conflicts and Governance« |
| 11 | New Projects |
| 12 | Agricultural landscapes influence the global atmospheric chemistry |
| 13 | Unlocking the potential of crop upgrading strategies in Dodoma, Tanzania |
| 14 | Building bridges in biodiversity research |
| 15 | Smart farming technologies — a must-have for 21st century farming? |
| 16 | Novel and well-tried ways to a sustainable European agriculture |
| 17 | Planning and governing of nature-based solutions in river landscapes |
| 19 | Current Projects |
| 20 | The use of Big Data approaches to detect patterns in nature |
| 21 | Science as development aid: India undergoing (climate) change |
| 22 | Drones decipher landscape patterns |
| 23 | Sustainable land management strategies for southern Amazonia |
| 24 | Exploring the carbon dynamics of kettle holes |
| 25 | Criteria for Socially Responsible Research processes |
| 26 | The Year in Retrospect |
| 31 | Annex |
| 32 | Facts & figures |
| 34 | Finances |
| 35 | Management, boards & committees |
| 36 | Institutes of ZALF |
| 37 | Doctoral researchers & postdocs |
| 38 | Scholarship holders |
| 39 | Doctoral theses |
| 40 | Guests & fellows |
| 41 | New third party funded projects |
| 43 | Cooperation (selected) |
| 44 | Teaching |
| 45 | Offices & tasks (selected) |
| 47 | Peer-reviewed journal articles |
| 55 | Imprint |
| 56 | Abbreviations |
| 57 | Image sources |
At ZALF, we address many of these challenges in our research. Due to our interdisciplinary focus and our extensive and unique databases, we are able to investigate complex relationships at the landscape scale and thus contribute to the development of solutions to complex problems. Our particular strength resides in the combination of evidence-based research on landscape processes, land use systems and governance with methods on data analysis and mathematical modelling. The integration and synthesis of our results is thereby essential to support successfully decision- and policy-making across organisational levels including the transfer of our outcomes into science, politics and society. In several new research projects starting in 2016, we address problems related to climate mitigation, food security and sustainability of primary production and investigate the use of new technologies as for example related to the digitalization of agriculture.

Agricultural landscapes can be sink or source for greenhouse gases and other trace gases, which largely depends on agricultural management. The regulatory function of plant-microbiomes for the emission of biogenic volatile organic compounds in agricultural landscapes is subject to investigation in two new projects: MethanolSINK und CHLOROFILTER (p. 12). Food security is still a problem in large parts of Africa. In a new study a comparative assessment of risk minimisation strategies for local agriculture is performed to reduce production risks for per millet and increase productivity (p. 13). Several aspects of biodiversity as affected by human activities are investigated in different biological systems within the BIBS project (p. 14). A synthesis of results of this research will be made available to politics and public society. A close dialogue between researchers and farmers is the basis in the EU H2020 funded project Smart AKIS to identify pre-conditions for a broader use of Smart Farming Technologies (p. 15). Sustainability in agriculture is the particular subject of two other new projects. The VITAL project (p. 16) seeks for solutions to support the transfer of agriculture in Europe towards sustainable intensification. The PlanSmart project, (p. 17) focuses on the planning and governance of nature-based solutions for river landscapes. These new projects build on and continue the successful work of ongoing research. For example, in two ongoing projects, we have started to employ new technologies and approaches such as ›Big Data‹ and drones to identify patterns in nature (p. 20) and landscapes (p. 22), respectively. Research in developing and transition countries in the context of the global challenges has been established at ZALF for some time. Among other projects, researchers at ZALF work together with colleagues from India to identify solutions for regions that are particularly prone to risk by climate change (p. 21) or with colleagues from different Universities in Brazil to develop sustainable land use strategies for South Amazonia within the CARBIOSIAL project (p. 23).

Climate mitigation is also a research topic in agricultural landscapes of regions close to the location of our institute. Of particular interest here is a better understanding of the carbon balance of kettle holes and ponds and their potential role as carbon sinks (p. 24). Research on sustainability at ZALF also addresses the sustainability
Our particular strength resides in the combination of evidence-based research on landscape processes, land use systems and governance with methods on data analysis and mathematical modelling.

Next to the many successful research activities, 2016 was also an important year for ZALF in other respects as summarised in a short review (p. 26–29). For example, in March, ZALF hosted the international Crop Modelling Conference iCROPM-2016, which was jointly organised by the Institute of Crop Science and Resource Conservation at the University Bonn, ZALF, and several other international research organisations. The very successful conference was also my first international activity as the new Scientific Director of ZALF, following inauguration on 1st March 2016. ZALF has also been visibly active in the initiative for innovation in agriculture called Landwirtschaft 4.0 and has improved its transfer activities, for example through the organisation of a podium discussion on legumes in Berlin for which three other Leibniz institutes and other partners could be engaged.

However, the biggest task in 2016 and the first challenge of the newly appointed executive board and the newly founded ZALF Board was the presentation of ZALF during the two-day evaluation visit of the evaluation board consisting of well-recognised international scientists appointed by the Leibniz Association in June. We could show that since the last evaluation in 2013 ZALF had achieved considerable improvements in key evaluation criteria such as publications in peer-reviewed journals, an improved thematic focus, and a reorganisation of its administration. The new ZALF Executive Board successfully stressed our intention to intensify the initiated change process and convincingly communicated the vision for our future development. The Senate of the Leibniz Association clearly supported the change process to develop ZALF into an excellent and internationally recognised research institute and agreed to fund ZALF for the next seven years in March 2017.

Please be invited to read more details about our research and other activities in 2016 in this report.

Prof. Dr. Frank A. Ewert
Scientific Director
CORE TOPICS
Considering societal problems as a starting point for identifying research questions, ZALF derives its research topics mainly from the 2030 Agenda for Sustainable Development of the United Nations (UN) as well as the Grand Societal Challenges formulated by the Wissenschaftsrat (German Council of Science and Humanities), and in consideration of societal developments and relevant discussions in science policy.

Agricultural landscape research at ZALF focuses on the sustainable agricultural intensification as a contribution to food security and to the production of biomass for material and energetic use. Associated with these production-oriented aspects are research activities aiming for sustainable resource and water management, the improvement of ecosystem services as well as the maintenance and promotion of biodiversity in agriculturally used landscapes. The impacts of climate change on agricultural landscapes and the development of adequate adaption measures are our overarching research topics. The development of ecologically, economically, and socially sustainable land use concepts requires the consideration of the complex natural scientific mechanisms as well as relevant stakeholders and the socio-economic and institutional context.

ZALF's main task is therefore to combine natural, engineering, and social research in transdisciplinary approaches in order to develop solutions and recommendations for the sustainable use and development of agricultural landscapes. Research at ZALF is organised in three core topics, which focus on different characteristics and interdependencies of the overall system: natural sciences (Core Topic I), land use-related aspects (Core Topic II), and socio-economic research (Core Topic III).

SOLUTIONS FOR THE SUSTAINABLE USE OF AGRICULTURAL LANDSCAPES—CORE TOPICS

ZALF FEATURES A UNIQUE COMBINATION OF EXPERTISE IN NATURAL, ENGINEERING, AND SOCIAL SCIENCES. FOCUSING ON THREE CORE TOPICS, RESEARCH QUESTIONS OF HIGH RELEVANCE TO SOCIETY CAN THUS BE STUDIED AT DIFFERENT SCALES.

CORE TOPIC I
»LANDSCAPE FUNCTIONING«

CORE TOPIC II
»LAND USE AND IMPACTS«

CORE TOPIC III
»LAND USE CONFLICTS AND GOVERNANCE«
CORE TOPIC I »LANDSCAPE FUNCTIONING«

Core Topic I focusses on studying the natural science basis of the »functioning« of spatio-temporally differentiated landscape processes, aiming to improve the understanding of all relevant processes as well as their interdependencies and interactions within the landscape.

Core Topic I constantly derives new problem-oriented data and knowledge from basic research, which are then transferred to Core Topics II and III. This includes, for example, statements on the environmental impact of land use systems as well as recommendations regarding the optimisation of water and nutrient utilisation and the reduction of land use-related environmental impacts.

PROJECTS OF CORE TOPIC I (SELECTED)

- Agricultural landscapes influence the global atmospheric chemistry, DFG (p. 12)
- Building bridges in biodiversity research, BMBF (p. 14)
- The use of Big Data approaches to detect patterns in nature, Budget (p. 20)
- Drones decipher landscape patterns, ZALF, MWFK, BMEL (p. 22)
- Exploring the carbon dynamics of kettle holes, Leibniz Association (p. 24)
- Microbial consumption of methanol in a grassland, DFG
- Multiscale analysis of dust emissions from agricultural soils in La Pampa, Argentina, DFG
- Spatiotemporal dynamics of biogenic Si pools in initial soils and their relevance for desilication, DFG
- Landscape-scale biodiversity and the balancing of provisioning, regulating, and supporting ecosystem services, Sub-project Abiotic and biotic processes behind ecosystem services in European agricultural landscapes, EU/BMBF joint BiodivERsA/FACCE project
- Compilation of cross-compartment theories and models in terrestrial environmental sciences, DFG
- N stabilisation and N placement near roots as innovative technologies for optimising resource efficiency of urea fertilisation, BMEL
Core Topic II deals with agricultural production in a landscape context, with explicit consideration and utilisation of the diverse feedback mechanisms operating on various spatial and temporal scales in agricultural landscapes.

Based on the natural science basis (Core Topic I), management measures and their role as controlling factors in the interaction of land use and ecosystems are the objects of investigation in Core Topic II. Climate change, trends in prices, changes in demand, and the governance of agricultural landscape use as well as technical developments and other socio-economic trends are considered as exogenous driving forces. Agricultural and forest land use is shaped by these drivers and at the same time interacts with ecosystems and the entire landscape. Indicator systems are developed for impact assessment and the evaluation of land use changes. These indicator systems aggregate individual analytical results into knowledge relevant for action and decision-making.

PROJECTS OF CORE TOPIC II (SELECTED)

- Unlocking the potential of crop upgrading strategies in Dodoma, Tanzania, BLE (p. 13)

- Smart farming technologies — a must-have for 21st century farming? EU (p. 15)

- Novel and well-tried ways to a sustainable European agriculture, EU (p. 16)

- Sustainable land management strategies for southern Amazonia, BMBF (p. 23)

- Criteria for Socially Responsible Research processes, BMBF joint research project (p. 25)

- Development and comparison of optimised systems for the agricultural production of energy crops under different site conditions in Germany: Phase III, Sub-project 2: Ecological accompanying research, Part: Biotic, Part: Abiotic, BMEL, FNR

- Agriculture for species diversity — Development and implementation of a new nature conservation standard for organic farmers to increase species diversity at the farm level, WWF, Biopark

- Adaptation to climate change: Options for cropping and production systems in Europe, Work Package B: Economic assessment of climate change adaptation strategies; Work Package A: Co-design of climate-adapted production systems, BMBF / ERA-NET

- Impacts of climate change on European agriculture and food securities — Risk assessment in cooperation with international projects, EU, FACCE JPI, ERA-NET
Core Topic III focuses on the preferences of various land users and stakeholders and the resulting land use conflicts at the landscape level.

Based on the analysis and evaluation of existing governance methods and instruments, scientists investigate the instruments and institutions required to achieve sustainable land use and the stakeholders which are relevant for the development and implementation of institutional solutions. The inclusion of stakeholders that are relevant for agricultural landscape use as well as their interests and logic of action are prerequisites for adapting and newly developing governance approaches at regional, national, and international levels.

PROJECTS OF CORE TOPIC III (SELECTED)

- Novel and well-tried ways to a sustainable European agriculture, EU (p. 16)
- Planning and governing of nature-based solutions in river landscapes, BMBF junior research group (p. 17)
- Science as development aid: India undergoing (climate) change, DAAD (p. 21)
- Criteria for Socially Responsible Research processes, BMBF joint research project (p. 25)
- AgoraNatura—Developing an online marketplace for more nature, BMBF joint research project
- Scaling-up Nutrition: Implementing Potentials of nutrition-sensitive and diversified agriculture to increase food security, BMEL
- Innovation Group Ginkoo: Designing integrative innovation processes: New institutional and regional forms of coordination for sustainable land management, BMBF joint research group
- Providing smart delivery of public goods by EU agriculture and forestry, EU Horizon 2020
- Farm Level Indicators for New Topics in Policy Evaluation, EU-FP7
- Civil-Public-Private-Partnerships: Collaborative governance approaches for policy innovation to enhance biodiversity and ecosystem services delivery in agricultural landscapes. Sub-project: Production practices and ecosystem services + Sub-project: Coordination—production practices and governance recommendations, BMBF/ERA-NET
NEW PROJECTS
AGRICULTURAL LANDSCAPES INFLUENCE THE GLOBAL ATMOSPHERIC CHEMISTRY

STEFFEN KOLB

Agricultural landscapes are sinks and sources of greenhouse and other trace gases, whose emissions are substantially modulated by agricultural management. Organic trace gases formed by plant-driven processes, known as biogenic volatile organic compounds (bVOCs), can be degraded by microbiomes living in the soil as well as in or on above-ground plant parts. This regulatory function regarding bVOC emissions of agricultural landscapes is investigated at ZALF in two new projects: MethanolSINK and CHLOROFILTER.

In the project MethanolSINK, S. Kanukollu is working on methanol conversion processes in managed grasslands at the ZALF research station in Paulinenaue. She analyses the microbiome composition of representative plant species and identifies methanol-degrading microbes on various plant organs. In 2018, a field experiment will be conducted to study the activity of the aforementioned microbes in the rhizosphere and phyllosphere and methanol fluxes over space and time in collaboration with the atmospheric chemist A. Held of the University of Bayreuth. The ultimate project aim is to predict the quantitative dynamics of methanol fluxes based on measured data and further abiotic parameters. These results will be used to improve the modelling of methanol fluxes of managed grasslands.

The project CHLOROFILTER brings together German and French scientists to work on a systematic understanding of the global sink for chloromethane, a gaseous compound involved in the destruction of the ozone layer. The actual global budget of this chlorinated hydrocarbon is particularly uncertain regarding the sink terms. The consortium is following the hypothesis that the activity of microbiomes in the atmosphere and on the Earth’s surface may be responsible for a major sink, which has been ignored so far. Project partners of the University of Heidelberg, of CNRS, the University of Strasbourg, and the University of Blaise-Pascal jointly work with E. Kröber and S. Kolb of the Terrestrial Microbiology working group of ZALF. In cooperation with the working group of F. Keppler (Heidelberg), for example, isotope signatures of chloromethane will be correlated with the sink type and strength. To date, it remains unclear to what degree the crop-microbiome system (also called crop holobiont) emits chloromethane, and how its emission rates vary in response to salt and temperature stress. The doctoral student D. Bachmann will address this important question.

Projects: Microbial Methanol Sink of a Grassland/The Impact of Microorganisms as a Sink of Atmospheric Chloromethane, **Terms:** 2016–2018 / 19 **Funding:** DFG/GRF, L’Agence national de la recherche **Lead:** S. Kolb (skolb@zalf.de) **Partners:** MethanolSINK: A. Held (Atmospheric Chemistry, BayCEER, Univ. of Bayreuth)/CHLOROFILTER: F. Keppler (Dept. Biogeochemistry, Univ. of Heidelberg), S. Vuillieumier (Univ. of Strasbourg, CNRS), F. Bringel (CNRS Strasbourg), P. Amato, A. Délort (Univ. of Blaise-Pascal, Clermont Ferrand) **ZALF contribution:** LBG MethanolSINK: http://gepris.dfg.de/gepris/projekt/255179679 CHLOROFILTER: http://gepris.dfg.de/gepris/projekt/258712308
Despite continuous efforts to reduce the number of people suffering from hunger since 1990, only a mere 5% reduction has been achieved in Sub-Saharan Africa. Land degradation, depletion of soil fertility, water stress, and high fertilizer costs contribute to low crop yields, particularly for pearl millet, which is a main staple food crop in semi-arid regions of Tanzania. The onset, ending, and duration of the rainy season and growing period has become increasingly erratic, resulting in higher risk of crop failure, and consequently poverty and hunger.

This research project will test, compare, and combine upgrading strategies (UPS) of scientists and farmers to reduce the production risks of pearl millet. Over two rainy seasons, it will investigate tied ridges and microfertilization as scientifically proven in comparison with the management strategies of local farmers in the Tanzanian Dodoma region. The risk minimising strategies of the local farmers include e.g. (a) time-dependent measures such as dry seeding, resowing and the use of differently maturing crop varieties, (b) coping with spatial rainfall variability through the cultivation of large and widely dispersed fields, and (c) measures for maintaining soil fertility.

This study will evaluate the spatial (survey level up to a few kilometers) and temporal (annual, monthly, daily, hourly) rainfall variability and its effects on the UPS of up to 15 different farmers. Rainfall data is collected from 60–70 rain gauges. The crop models DSSAT and APEX will be used to simulate pearl millet cultivation in order to understand the interlinkages between crop management along UPS, and the socioeconomic and biophysical environment.

Poverty and hunger continue to be prevalent features of rural semi-arid Tanzania. This study aims to reduce production risks and improve pearl millet productivity by evaluating tied ridges and microfertilization as upgrading strategies (UPS) in the local farmers’ context. Pearl millet cultivation is simulated based on spatial and temporal rainfall variability quantified using 60–70 rain gauges using the crop models DSSAT and APEX, comparing UPS and local crop management activities.
BUILDING BRIDGES IN BIODIVERSITY RESEARCH

GUNNAR LISCHEID

Various aspects of biodiversity and mutual interferences with human activities are studied in diverse biological systems, at different spatial scales, and by different disciplines. The BIBS project aims at bridging these different aspects. The compiled results will be made available to decision-makers and the general public. Special attention is paid to rapid man-made transitions of ecological systems.

Various working packages focus on linkages between aquatic and terrestrial systems, urban and rural systems, above- and below-ground systems, as well as near-natural and novel ecosystems. ZALF contributes to three work packages of BIBS. In the first work package, ZALF has established and begun operating a sensor network in the AgroScapeLab Quillow in the Uckermark region, for which ZALF provides additional infrastructure, monitoring data, and basic information.

The second work package focuses on interactions between land use, biodiversity, and the ecosystem properties of kettle holes in a region of intense agricultural use. The effects of the surrounding terrestrial system on kettle holes are studied along a gradient of land use intensity. A mathematical model of biogeochemical processes in kettle holes will be applied and refined. In addition, machine learning approaches will be used to describe the interactions between external triggers and the biological and biogeochemical processes within kettle holes. The analysis will draw on existing data of the comprehensive landscape and kettle hole monitoring program of ZALF. Initial results indicate that biological, biogeochemical, and hydrological processes in kettle holes feature complex interactions. The input of nutrients, contaminants, and organic matter from adjacent arable fields into kettle holes can therefore yield diverse reactions, depending on the respective local conditions.

In work package 5, ZALF will contribute to an analysis of the costs and ecosystem services in a massively anthropogenically influenced environment. Here, especially in urban environments, new ecosystems develop continuously with novel biological communities of species that did not previously share a common development. These novel ecosystems are subject to new stress factors. This work package aims at a better understanding of the processes that result in rapid transitions from natural to novel communities and ecosystems. To that end, existing novel grassland ecosystems in an urban setting are monitored and supplemented by additional experiments. Biodiversity effects of native and invasive species on ecosystem services like control of the microclimate, carbon sequestration, and soil fertility can thus be assessed.

Project: Bridging in Biodiversity Science (BIBS)
Term: 2016–2019
Funding: BMBF
Lead at ZALF: G. Lischeid (lischeid@zalf.de)
ZALF contribution: LWH, LBG
http://www.bbib.org/bibs-projekt.html
Project partners in 7 European countries (France, Germany, Greece, Serbia, Spain, the Netherlands, and the UK) are cooperating to contribute to more sustainability and competitiveness in the agricultural sector through SFT.

To investigate the needs, interests, and innovative ideas of farmers, a survey with a total of 271 participants of the countries involved was conducted. Up-front, all partners were equipped with a common framework, standards on innovation processes, and a common methodological approach. Furthermore, all the interviewers attended a joint training session led by the ZALF project team to ensure comparable interview conditions. The survey data unveiled valuable insights into farmers’ perceptions of current challenges and the potential of SFT to overcome them.

Across Europe, the most important challenges for farmers were the reduction of crop diseases and soil conservation. Reducing harvest losses and water use were the challenges perceived as most, respectively highly important in Greece and Serbia, but surprisingly perceived as less important in Spain. Farm size seemed to influence these ratings; for example, a reduced water use was considered more important on small farms (< 2 ha) than on larger farms (> 100 ha). It was also observed that farmers prioritized SFT according to their cropping systems. GPS and similar devices (e.g. auto-steering) as well as drones, mapping, and aerial imagery are considered useful mainly for arable crops, whereas agricultural apps, weather stations, and soil moisture sensors with automatic data upload were preferred by vineyard and orchard farmers.

However, results indicate that there are still serious doubts about the ability of SFT to help farmers overcome their challenges. Nevertheless, the interviewees seem to keep track of technological developments, as almost 70% of them recently sought out information specific to SFT. Still, the questions of whether or not SFT are a “must-have for 21st century farming” cannot yet be answered. Coming up, the ZALF project team will cooperate with the German partner DLG to conduct three regional workshops. Also, the data basis will be enlarged by additional expert interviews, and an ex-post study of promising cases of innovation processes will be conducted.

European agricultural, rural regions face many economic, social, and environmental challenges. Smart farming technologies (SFT) such as information management systems, precision agriculture, or automation and robotics may help to overcome some of them. The EU Horizon 2020 Project Smart AKIS investigates conditions and requirements for the wider acceptance of SFT, specifically aiming to close the gap between theory and practice. ZALF scientists analysed the needs, interests, and innovative ideas of farmers regarding SFT.

Project: Smart AKIS— European Agricultural Knowledge and Innovation Systems (AKIS) towards innovation-driven research in Smart Farming Technology **Term:** 2016–2018 **Funding:** EU Horizon 2020 **Lead at ZALF:** A. Knierim (aknierim@zalf.de), A. Wurbs (awurbs@zalf.de) **Partners:** DLG, ACTA, FRcuma Ouest, DLO, Delphy, D. Tinker and Ass. Ltd., Agric. Univ. of Athens, Biosense Inst. Serbia, INTIA, INI, CEMA **ZALF contribution:** SO, LSE **http://cordis.europa.eu/project/rcn/200562_de.html**

http://www.smart-akis.com
NOVEL AND WELL-TRIED WAYS TO A SUSTAINABLE EUROPEAN AGRICULTURE

INGO ZASADA, MEIKE WELTIN

Agricultural use of the «Upper Rhinluch» peatland area in Brandenburg

Against the background of an increasing global demand for food and raw materials as well as a loss of biodiversity, climate change adaptation, and limited natural resources, there is a growing need for efficient resource use.

The European research project VITAL investigates transformation processes of agricultural systems towards a sustainably intensified production, simultaneously optimizing the agricultural production while reducing negative impacts on environment and society. Sustainable intensification approaches range from new technologies, such as precision farming or IT farm management solutions, to well-tried practices such as crop rotations, use of adapted varieties and residues of production. The system’s resilience can thus be improved and the application of fertilizers and pesticides reduced.

Cooperation between farms plays a pivotal role for sustainable intensification, for example via coordinated landscape planning or interregional exchange of knowledge and resources. This is supported by the first project results from the German case study region, the «Upper Rhinluch» in Brandenburg. The area is a drained peatland, which is partly extensively, partly intensively used, and widely known as a crane resting area. Through personal interviews and a regional discussion workshop, lacking cooperation and coordination in land and water management as well as in the realisation of tourism potentials were pointed out as obstacles.

However, manifold potentials for the use and expansion of sustainable new cultivation practices were also identified. In a next step, approaches for solutions and future scenarios will be developed in close cooperation between local stakeholders and scientists.

A joint large-scale survey with the EU project PROVIDE in Northern Germany will empirically investigate farmers’ decision making regarding cultivation and management practices inbetween the two poles of food production and provision of environmental goods. The feasibility of different development paths will then be up-scaled to the European level.

Sustainable intensification requires rethinking of farmers, regional decision-makers and the European agricultural policy. Novel technologies, well-tried agricultural practice, resource-efficient management, and regional cooperation are key elements for an integrated strategy. The project VITAL studies transformation processes of European agricultural systems towards a sustainably intensified production, and collaborates with farmers and stakeholders to identify innovative measures and new cooperation models to inform targeted policy design.

Project: Viable InTensification of Agricultural production through sustainable Landscape transition (VITAL)
Term: 2016–2019
Funding: EU Horizon 2020 (FACCE-JPI)
Lead at ZALF: I. Zasada (ingo.zasada@zalf.de)
Partners: VU Univ. Amsterdam, INRA Avignon, Polytechnic Univ. Valencia, agrathaer
ZALF contribution: SO
http://vital.environmentalgeography.nl
Nature-based solutions, understood as actions which are inspired by nature, can help societies to address ecological, social, and economic challenges while at the same time supporting sustainability. They use natural characteristics and processes to make social-ecological systems more resilient against risks, e.g. by securing biodiversity and wildlife habitats, improving water quality, retaining nutrients and greenhouse gases, and increasing human health and well-being. Examples for NbS are, amongst others, the restoration of floodplains and wetlands, the creation of marginal strips, the construction of wooden structures, and the transformation of arable land into grassland or forest. NbS can in part replace grey infrastructure, while often delivering a broad spectrum of ecosystem services and being more cost-effective than technical alternatives.

The concept of nature-based solutions has been developed by the International Union for Conservation of Nature (IUCN) some years ago and was recently adopted and further developed by the European Commission. It is a very new concept in science and has to prove its value compared to established concepts like green or blue infrastructure, ecological engineering, or ecosystem-based approaches. In the context of social-ecological research, the junior research group PlanSmart therefore analyses aspects of planning and governing NbS in river landscapes using a transdisciplinary research approach.

In April 2016, the PlanSmart research group got started to explore NbS for water-borne challenges such as securing water quality and provision, wastewater management and protecting river basins against flooding. The junior scientists study options for applying transdisciplinary planning methodologies and technologies, assessing ecological, social, and economic effects of NbS, developing innovative governance approaches, and analysing the process of knowledge co-generation.

The social-ecological junior research group is a cooperative project between the Institute of Environmental Planning at the Leibniz Universität Hannover and ZALF.

Project: PlanSmart — Planung und Governance naturbasiertener Lösungen für wasserbasierte Herausforderungen in Flusslandschaften
Term: 2016–2021
Funding: BMBF (FONA)
Lead at ZALF: B. Schröter (barbara.schroeter@zalf.de)
Partners: C. Albert, Leibniz Univ. Hannover
ZALF contribution: SO
http://www.plansmart.info
CURRENT PROJECTS
For 20 years, ZALF researchers have collected large amounts of data on soil, groundwater, and air, observed animals and analysed plants in a 160 km² study area. The data is supposed to help improve our understanding of environmental interactions. Previously, data merging and interpretation proved extremely difficult due to the enormous complexity and quantity of data—hence, derived statements on natural correlations were vague. An adaptation from theoretical physics first led to a new method and then to the discovery of patterns in the sea of data.

The analysis, however, showed a gradual change in stream water quality, but not in the groundwater. Additional data helped to find a plausible explanation: groundwater levels had been dropping over several years. The reason for the improved water quality was thus not a reduction of fertilizer use, but the weather, because very little heavily contaminated water from the arable land had found its way into the streams during the recent warm and dry years.

For 20 years, ZALF researchers have collected large amounts of data on soil, groundwater, and air, observed animals and analysed plants in a 160 km² study area. The data is supposed to help improve our understanding of environmental interactions. Previously, data merging and interpretation proved extremely difficult due to the enormous complexity and quantity of data—hence, derived statements on natural correlations were vague. An adaptation from theoretical physics first led to a new method and then to the discovery of patterns in the sea of data.

The analysis, however, showed a gradual change in stream water quality, but not in the groundwater. Additional data helped to find a plausible explanation: groundwater levels had been dropping over several years. The reason for the improved water quality was thus not a reduction of fertilizer use, but the weather, because very little heavily contaminated water from the arable land had found its way into the streams during the recent warm and dry years.

For 20 years, ZALF researchers have collected large amounts of data on soil, groundwater, and air, observed animals and analysed plants in a 160 km² study area. The data is supposed to help improve our understanding of environmental interactions. Previously, data merging and interpretation proved extremely difficult due to the enormous complexity and quantity of data—hence, derived statements on natural correlations were vague. An adaptation from theoretical physics first led to a new method and then to the discovery of patterns in the sea of data.

The analysis, however, showed a gradual change in stream water quality, but not in the groundwater. Additional data helped to find a plausible explanation: groundwater levels had been dropping over several years. The reason for the improved water quality was thus not a reduction of fertilizer use, but the weather, because very little heavily contaminated water from the arable land had found its way into the streams during the recent warm and dry years.
Hunger, disease, and water shortages resulting from periods of drought threaten the lives of the people in Odisha, India.

According to the Centre for Research on the Epidemiology of Disasters (CRED), approximately 4.25 million people have died between 1900 and 2015 as a consequence of extreme droughts. During this period, the Indian state of Odisha experienced 49 floods, 30 droughts, and 11 hurricanes. The progress of climate change has further exacerbated this trend in recent years. Within a doctorate project at the Institute of Socio-Economics supported by the German Academic Exchange Service (DAAD), Anu S. Sam, a native Indian, is now investigating one of the most affected regions of India with respect to local conditions and specific risk factors.

From 157 households in four different communities, data was collected on population structure, livelihood, health, social networks, physical, financial, and natural resources, as well as on the effects of natural disasters on the families. The bitter results were: More than 95% of the households had neither access to clean water nor toilets. Diarrhoeal diseases, allergies, skin diseases, and respiratory diseases are widespread. Most of the villagers are illiterate.

Nevertheless, tiny, but highly effective differences between the villages became obvious: households which, in addition to cultivating fields, also keep cows, buffaloes, goats, and chicken are less vulnerable. Families who can send their sons to building sites, factories, and restaurants outside the village have a reliable income. A minimum level of health care as well adequate water supply strengthens them for critical periods. But the most important thing appears to be the literacy of the people, especially for women and girls, who often bear the responsibility for feeding the entire family. With new knowledge, e.g. on how to adapt the cultivation of their fields to climate change, they can break new ground and take control of their destiny.

In a next step, the project intends to penetrate even deeper into society, with plans including studies on the role of women and the issue of labor migration.

Extreme droughts have always threatened the lives of small farmers in the state of Odisha in India. In recent years, however, the number of natural disasters has increased. As part of a research group at ZALF, the Indian doctoral student Anu Susan Sam is looking to develop solutions for one of the most affected regions in India.
Spatial pattern of carbon export from the CarboZALF experimental field (Uckermark)

In the public perception, a drone is either intended for military purposes or considered a threat to privacy, e.g. due to "toys" equipped with cameras. In agricultural and environmental research, drones — so-called "UAS" (Unmanned Aerial Systems) — have become an indispensable technology for data acquisition, as they are flexible to use and easy to handle. On-board multispectral and thermal sensors or laser systems allow for the landscape-scale determination of important land surface properties with a very high spatial resolution and at any time. Thus, structures controlling landscape processes can be deciphered as well as their temporal changes during a vegetation period or over several years.

In the context of ZALF research on the interactions between land use and climate change, an interdisciplinary group of scientists studies the influence of soil erosion on CO$_2$ sources and sinks in agricultural landscapes (CarboZALF project). For this purpose, precise information on site-specific primary production and related carbon exports are required. In a recent ZALF case study, high-resolution data on carbon exports were acquired using drone-based multispectral imagery. At the CarboZALF experimental field, carbon exports of lucerne varied from 50 to 250 g C/m2, a magnitude which is highly relevant for net CO$_2$ fluxes. Furthermore, the export pattern was explained by the soils’ erosional status: the lowest exports were found on extremely eroded soils (Calcaric Regosols); the highest exports on nutrient-rich, groundwater influenced soils (Endogleyic Colluvic Regosols) in depressions. The existence of small-scale variability within each soil zone demonstrates the potential of UAS-based remote sensing to support process research and uncertainty assessment at the landscape scale.

Drones are of increasing importance for agricultural and environmental research. ZALF applies drones to characterise vegetation patterns, plant biomass, and soil surfaces in agricultural landscapes. With the drone-based, spatially explicit analysis of carbon exports via crop harvest in relation to erosion-induced soil patterns, the interdisciplinary project CarboZALF recently achieved a breakthrough in quantifying one of the most sensitive parts of carbon balances — a precondition for the detection of CO$_2$ sources and sinks in agricultural landscapes.

Future drone-based research at ZALF will be extended towards landscape-scale patterns and dynamics of important state variables and processes, such as soil organic carbon, plant primary production, plant stress indication, dust transport, and transpiration of crop canopies.

Project: Carbon Dynamics of Agricultural Landscapes in Global Change
Term: 2009–2024
Funding: MWFK Brandenburg, BMEL
Lead: J. Augustin (jaug@zalf.de), M. Sommer (sommer@zalf.de)
ZALF contribution: BLF, LBG, LSA
SUSTAINABLE LAND MANAGEMENT STRATEGIES FOR SOUTHERN AMAZONIA
CLAAS NENDEL, ANNA HAMPF

With respect to climate protection and biodiversity, the Amazon rainforest is one of the most important ecosystems worldwide. For decades, however, the forest area has been shrinking and has given way to pastures and soybean fields, particularly in Mato Grosso and Pará. Within the research project CARBIOCIAL, scientists of 10 German and several Brazilian universities, UFZ, and ZALF have therefore analysed the development of land use under different socio-economic scenarios, and developed sustainable land management strategies for Southern Amazonia.

In particular, the project partners investigated how more carbon can be stored in soils, how climate change will affect agricultural yields, and how different socio-economic scenarios may influence land use. With their simulation of agricultural yields, ZALF scientists have made an important contribution to the CARBIOCIAL project, serving as a link between climate and land use simulations. Applying their Model for Nitrogen and Carbon in Agro-ecosystems (MONICA), they produced high-resolution yield maps for soybeans, maize, and cotton. These maps show the consequences of climate change by the year 2040: strongly decreasing rainfall in the entire research region and declining yields, especially in the northern part of the Pará state. The results of the yield simulations served as input for the agent-based farm economy model MPMAS and for the LandSHIFT land use model, which was used to estimate land use changes for various socio-economic scenarios (trend continuation, legal and illegal intensification, and sustainable development). In cooperation with the University of Kiel, the ZALF scientists also discovered that the application of easily accessible organic materials such as eucalyptus leaves, sawdust, sugar cane filter cake, or passion fruit residues can increase organic carbon contents in the upper 30 cm of the soil by about 5 tons per hectare per year. Another highlight of the CARBIOCIAL project was the exploration of carbon being stored in deep soil layers. For this purpose, soil scientists excavated a 10-meter-deep hole in the pristine rainforest inhabited by the indigenous Kajapó people. The local population is involved in the international CO₂ trade under the REDD (Reducing Emissions from Deforestation and Forest Degradation) program and can thus benefit from the results of the soil survey: about 50% of the carbon stock is stored more than one meter below soil surface; this means REDD does not account for this data.

Although not all of the initial objectives of the CARBIOCIAL project have been achieved, it is nevertheless a successful example of interdisciplinary and transdisciplinary research, combining integrated modeling approaches and socio-economic aspects to contribute to a better understanding of human-environmental interactions in the Amazon and to the development of sustainable land management strategies.

EXPLORING THE CARBON DYNAMICS OF KETTLE HOLES

GUNNAR LISCHEID

The kettle holes of Northeast Germany, i.e. small lakes in depressions, can be long-term sinks of organic carbon: organic remains are hardly decomposed in the oxygen-poor sediment. However, a small proportion may be emitted as climatic relevant methane. In addition, some carbon is released when kettle holes dry out. In their joint project, scientists of ZALF and IGB took a closer at these processes.

The project focussed on intense studies of two kettle holes in the Uckermark region, supplemented by laboratory experiments and a variety of water, plant, and soil samples analysed for various elements and isotopes. The primary objective was to quantify the input of organic carbon via soil erosion, photosynthesis in the kettle holes, and via groundwater influx as well as the carbon output via decomposition, methane emissions or groundwater efflux. In addition, the drivers of carbon turnover in the kettle holes were to be determined in order to assess the future development assuming different scenarios.

To that end, the project studied the transfer of soil material in the vicinity of the kettle holes, quantified the input via sediment probes and sampling of suspended matter, and measured organic carbon built up by plants and algae. The source of organic matter in water and soil was determined using carbon and nitrogen isotopes. Gaseous carbon release from the kettle holes and their surroundings was quantified by means of gas exchange measurements. Additional periodic sampling of another 60 kettle holes in the region allowed assessing the representativity of the results. Field studies and lab experiments showed that carbon and nutrient turnover in the kettle holes highly depended on the length of preceding desiccation phases. Based on the measured data, a biogeochemical model to simulate these turnover processes was set up and calibrated.

In general, the kettle holes exhibited an enormous spatial and temporal variability. Even adjacent kettle holes can differ substantially. Moreover, kettle holes are closely linked to their surroundings, which are often intensively agriculturally used.

Despite the high variability and complexity, the LandScales project developed initial approaches to transfer findings from a few kettle holes to larger regions.

Project: Connecting processes and structures driving the landscape carbon dynamics over scales (LandScales)
Term: 2012–2016 Funding: Leibniz Association Lead: G. Lischeid (lischeid@zalf.de) Partners: IGB ZALF
contribution: LWH, LBG, BLF
Today, sustainable development is a widely accepted societal principle. As a driving force for development, research bears its share of the responsibility for implementation — as much as politics, economy or civil society. This poses challenges on research content and the modus of research, i.e. the research process itself. »Socially Responsible Research« describes a research process that contributes to sustainable development based on a critical and systematic reflection on research questions, theoretical assumptions, methods, results, as well as their communication and impacts. The three research organisations Leibniz Association, Fraunhofer-Gesellschaft, and Helmholtz Association developed a Framework for Reflection on »Socially Responsible Research«, which is built upon the rules of good scientific practice and supports researchers in considering societal responsibility during the entire research process. It contains eight reflection criteria applicable to all research disciplines and considers the questions of how, with whom, and for whom research is carried out.

Eight criteria for »Socially Responsible Research«:

<table>
<thead>
<tr>
<th>Ethic</th>
<th>Dealing with societal values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrative approach</td>
<td>Incorporation of relevant aspects and interactions at spatial, temporal, analytical and methodological level</td>
</tr>
<tr>
<td>Interdisciplinarity</td>
<td>Combination of approaches and methods of different disciplines</td>
</tr>
<tr>
<td>User orientation</td>
<td>Involvement of potential users (e.g. politicians, businesses, civil society)</td>
</tr>
</tbody>
</table>

The implementation of the Framework for Reflection in daily research routines requires a discussion of conflicts of interests and goals, and needs efforts on individual, organisational, and institutional levels.

The societal responsibility of research in shaping sustainable development is not only tied to the research topic, but also to the way it is conducted. In the LeNa project, a framework for reflection for »Socially Responsible Research« processes was developed, which systemises the »HOW« and requires a discussion of conflicts of interests and goals. It addresses requirements of societal responsibility for all research areas and disciplines, and complements thematic research contributing to solutions for societal challenges.
THE YEAR

13TH KITCHEN GARDENS AGAINST MALNUTRITION
ZALF coordinates the BMEL-financed project »Scaling-up Nutrition: potential applications of nutrition-sensitive and diversified agriculture for improved food security« (Scale-N).

5TH SCIENCE MANAGEMENT
The Center for Science and Research Management (ZWM) welcomed ZALF as a new member. ZWM supports the development of the entire science system through the conceptualization and implementation of training seminars and workshops, moderation and advice, and support for human resources and strategy development, as well as supervision of evaluation and change processes.

1ST CHANGING LEADERSHIP
ZALF’s new Scientific Director Prof. Dr. Frank Ewert assumed his new role. Prof. Ewert has many years of national and international research experience regarding the development of sustainable cultivation and land use systems. As head of the interdisciplinary Working Group Crop Production at the University of Bonn, he led an international team.

JANUARY

20TH DISTINGUISHED AGRICULTURE FOR BIODIVERSITY
A jury of experts recognised ZALF’s »Agriculture for Biodiversity« project as the most pioneering project of the UN Decade on Biological Diversity. ZALF scientists had developed an evaluation system for environmental protection services provided by organic agriculture at the operational level.

FEBRUARY

25TH ONLINE MARKETPLACE FOR ECOSYSTEM SERVICES
The »AgoraNatura« project kicked off: In the future, it will be possible to trade the services people use that nature provides via an online marketplace. The goal is to create a platform that generates additional funds for ecosystem conservation. The nature market should be officially online by 2018.

MARCH

15TH-17TH ICROP2016
In March, more than 300 agricultural scientists specialized in the application of computer models participated in the iCROP Symposium in Berlin.

The three-day event was jointly organized and implemented by ZALF and the research networks MACSUR and AgMIP. The 85 lectures and 130 posters informed participants from all corners of the world about current trends and research questions.
IN RETROSPECT

4TH UNIQUE SOIL EXPERIMENT
In April, leading international erosion researchers met for a globally unique field experiment at the ZALF Research Station.

In only four days, long-term erosion effects due to soil cultivation were simulated on a 50-meter-long slope. With the help of installed sensors as well as highly accurate surface surveying and drone-based aerial imaging techniques, the scientists were able to experimentally determine the rates of soil transfer and generate new understandings of processes.

18TH INNOVATION INITIATIVE AGRICULTURE 4.0
The Leibniz Research Alliance »Food and Nutrition« published a new position paper on the digitalization of agriculture. ZALF, along with ATB and IHP, was one of the initiators and played a key role in drafting the strategy paper. »Precision Agriculture« and »Smart Farming« are already part of everyday agricultural practices. In light of this, the scientists involved in the initiative call on this advanced digitalization to not only follow an economic rationale, but also to allow for societal participation regarding questions of sustainability as well as environmental, animal, and consumer protection.

11TH LONG NIGHT OF THE SCIENCES
At the ZALF booth located in the headquarters of the Leibniz Association in Berlin, visitors conducted interactive experiments to discover why soybeans and lupines are considered natural fertilizer factories.

APRIL

23RD OPEN SCIENCE: PHD DAY AT ZALF
Science Slam, Poster Competition, Elevator Pitches: the event featured modern forms of knowledge dissemination channels and provided a platform for scientific exchange and discourse. A particular highlight was the keynote speech by open science pioneer Jon Tennant.
THE YEAR

6TH DOUBLE AWARDS
The Albrecht-Daniel-Thaer Honorary Award was given to Meike Weltin and Dr. Jens Rommel from ZALF’s Institute of Socio-Economics. Ms. Weltin received the award for the best Master’s thesis, and Mr. Rommel for the best doctoral thesis.

15TH KNOWLEDGE TRANSFER
Bringing together practical experience and science: under this objective, ZALF’s Institute of Land Use Systems organized an expert discussion and a field day on the topic of «Strategy Development for Soybean Cultivation and Sensitive Locations» particularly for employees engaged in agriculture.

26TH INTERNATIONAL EXCHANGE
For many years, there has been close collaboration between ZALF and the World Agroforestry Centre (ICRAF) in Kenya and Tanzania. The collaboration began in 2007 with multiple projects and continues to this day.

JULY

LEIBNIZ PRESIDENT AS GUEST A diversified program was prepared for Prof. Dr. Eng. Matthias Kleiner: after an exchange with the Executive Board and the Heads of Institutes, a field visit was scheduled. Standing in the midst of drones used to investigate landscapes from the air and chambers for analysing soil gases, the focus laid especially on data — as the «raw material» of future agricultural landscape research.

AUGUST

Anthony Kimaro, an employee at ICRAF headquarters in Nairobi and a ZALF fellow, visited ZALF to facilitate cooperation even further. Together, ZALF and ICRAF prepare project proposals and publication of the results from work in Tanzania.

SEPTEMBER

In September, ZALF invited counterparts from the Soil Science Department of the Institute of Plant Nutrition and Soil Science from Christian Albrechts University in Kiel to discuss the topic of «Post-Glacial Soil Landscapes in Eastern Brandenburg». The event program included visits to ongoing field experiments of the Institute of Soil Landscape Research including the CarboZALF experimental site and the erosion measurement site near Christianenhof.
IN RETROSPECT

18TH MÜNCHEBERGER RESEARCH AWARD ZALF scientist Dr. Ralf Bloch received the Honorary Award of the Research Town of Müncheberg. The jury notes the real-world relevance of his doctoral thesis on the influence of climate change on agriculture in Brandenburg.

28TH SCIENCE IN DIALOGUE: SPOTLIGHT ON LEGUMES AND PULSES In October, ZALF held an interactive panel discussion at the headquarters of the Leibniz Association in Berlin on the topic of »Legumes — An Old Crop with a Big Future«. As a special feature, scientists from four different Leibniz Institutions, and thus with different areas of expertise, all addressed the subject of legumes from different perspectives. In addition to questions of genetics, cultivation, and animal nutrition, discussions also focused on nutritional physiology. Over 75 attentive audience members followed the discussion and actively engaged in the debate through social media.

22ND SURVEY: MORE GREEN ON BERLIN ROOFTOPS? ZALF scientists conducted a survey asking Berlin residents about their opinion on urban agriculture. First results from the study were released in November: rooftop gardens receive widespread approval as the preferred cultivation method, as unoccupied city spaces can thus be sensibly used for food production.

6TH GUESTS FROM BELARUS Guests from the Federal Government of Belarus visited ZALF in the course of an informational tour on the subject of organic agriculture, which was commissioned by the German Foreign Office of the Goethe-Institute. Emphasis was placed on the development and modelling of cultivation methods in organic agriculture.

1ST PROCEEDINGS — 20 YEARS ON-FARM EXPERIMENT LIETZEN The proceedings cover the diverse topics of a field day in May organized by agrathaer GmbH. Contributions include the Challenges of Agriculture 4.0 and the importance of field trials, as well as developments in soil cultivation and technology, and address the history, progress, and research results of the On-Farm Experiment Lietzen over the past 20 years.

23RD FUTURE WORKSHOP The »Future Food Commons« project investigates new forms of the interaction between consumption and production in the context of food provision. In the first »Future Workshop« in September, participants from different social groups discussed potential developments of food supply. The workshop was led by the Frauenhofer ISI. The discussions were based on results from interviews and literature analyses conducted by ZALF.
FACTS & FIGURES

- **320** Employees (among them 174 scientists)
- **2310** Visitors
- **215** Peer-reviewed publications
- **26** Employees doing academic teaching
- **2839** Newspaper articles
- **139** Tasks and offices in scientific boards and bodies
- **36** Scientific conferences and workshops
- **16** Colloquia
- **8.4 million €** Total amount of third party money
- **21.1 million €** Basic funding
- **29.9 million €** Total budget
- **28%** Percentage of third party money
14 New doctoral researchers

9 Completed doctoral theses

42 Diplomas, master theses, bachelor theses

21 Newly started projects

241 Cooperating partners in 34 countries

150 Hectares of ZALF experimental sites
FINANCES

EXPENSES DURING BUDGET YEAR 2016*

Contributions of third parties in budget year 2016**

<table>
<thead>
<tr>
<th>Source</th>
<th>Amount (in thousands of euros)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRF</td>
<td>415</td>
</tr>
<tr>
<td>FEDERAL FINANCED PROJECTS</td>
<td>6,258</td>
</tr>
<tr>
<td>STATE FINANCED PROJECTS</td>
<td>231</td>
</tr>
<tr>
<td>EU</td>
<td>227</td>
</tr>
<tr>
<td>ERANET</td>
<td>202</td>
</tr>
<tr>
<td>PRIVATE COMPANIES</td>
<td>346</td>
</tr>
<tr>
<td>SAW</td>
<td>370</td>
</tr>
<tr>
<td>OTHERS</td>
<td>172</td>
</tr>
<tr>
<td>FOUNDATIONS</td>
<td>139</td>
</tr>
</tbody>
</table>

TOTAL IN THOUSAND EUROS |

29,033

PAYROLL EXPENSES 17,275
ADMINISTRATION EXPENSES 5,879
FACILITY MAINTENANCE EXPENSES 258
FACILITY INVESTMENTS 776
EQUIPMENT INVESTMENTS 884
GRF FEES 512
SAW FEES 676
CASH HOLDINGS 2,774

CORE FINANCING BY THE BRANDENBURGIAN MINISTRY OF SCIENCE, RESEARCH AND CULTURE (MWFK) AND THE FEDERAL MINISTRY OF FOOD AND AGRICULTURE (BMEL)

* expenses at key date March 21, 2017
** contributed third party money at key date February 28, 2017
Managing, Boards & Committees

Scientific Advisory Council of ZALF

Prof. Dr. Ernst Berg
Universität Bonn
Chairman

Prof. Dr. Nicola Fohrer
Christian-Albrechts-Universität zu Kiel

Dr. Annette Freibauer
Johann Heinrich von Thünen-Institut

Prof. Dr. Henning Kage
Christian-Albrechts-Universität zu Kiel

Prof. Dr. Martin Kaupenjohann
Technische Universität Berlin

Prof. Dr. Michael Kleyer
Universität Oldenburg

Dr. Stefan Mann
Eidgenössisches Departement für Wirtschaft, Bildung und Forschung WBF, Schweiz

Prof. Dr. Felix Müller
Christian-Albrechts-Universität zu Kiel

Prof. Dr. Harry Vereecken
Forschungszentrum Jülich

Members of ZALF

Dr. Claudia Herok
Ministerium für Wissenschaft, Forschung und Kultur (MWFK, Ref. 22), Brandenburg
Head of the Assembly of Members

Bernt Farcke
Bundesministerium für Ernährung und Landwirtschaft

Peter Schubert
Ministerium für Ländliche Entwicklung, Umwelt und Landwirtschaft, Brandenburg

Dr. Klaus-Peter Michel
Bundesministerium für Bildung und Forschung

Prof. Dr. Wolfgang Bokelmann
Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät

Udo Folgart
Agro-Glien GmbH

Prof. Dr. Ulrich Schurr
Forschungszentrum Jülich

Prof. Dr. Robert Seckler
Universität Potsdam, Vizepräsident für Forschung und wiss. Nachwuchs
INSTITUTES OF ZALF

BLF The Institute of Soil Landscape Research (BLF) studies structures, processes and functions of soil landscapes, meaning long-standing soil associations within their current landscape ecological context. For a fundamental understanding of the development and functioning of soil landscapes, soil processes are analyzed in their dependency on spatio-temporally variable structures—all the way from the micrometer scale up to the landscape scale.

Head of Institute: Prof. Dr. Michael Sommer

LBG The Institute of Landscape Biogeochemistry (LBG) investigates principles of C and N cycles in agricultural landscapes and their influences on the responses of landscape processes to climate change and land use management. Drivers and regulators of landscape processes are microbiomes, plants, and plant-soil-biome interactions, which are studied at the laboratory, greenhouse and landscape level.

Head of Institute: PD Dr. Steffen Kolb

LSA The Institute of Landscape Systems Analysis (LSA) explores ecosystem functions and services of agricultural landscapes. Methods and models for analysis and assessment purposes are developed to facilitate a better understanding and evaluation of relevant processes. These are the foundation for an integrated sustainability impact assessment of climate change, policy making and societal demands on agricultural landscapes.

Acting Head of Institute: Dr. Claas Nendel

LSE The Institute of Land Use Systems (LSE) develops sustainable land use systems and studies their contributions to the provision of ecosystem services in a landscape context. New assessment tools and indicators are created that can be used for simulation models as well as new governance approaches.

Head of Institute: Prof. Dr. Sonoko D. Bellingrath-Kimura

LWH The Institute of Landscape Hydrology (LWH) develops methods for sustainable water management that simultaneously ensure agricultural production, maintain ecosystem services and protect biodiversity. The institute’s work is based on a sound understanding of the interplay between hydrological, biogeochemical and biological processes including their interactions under changing environmental conditions.

Head of Institute: Prof. Dr. Gunnar Lischeid

SO The Institute of Socio-Economics (SO) investigates economic, social and political aspects of the sustainable use of agricultural landscapes. Research questions address actor behavior, governance approaches as well as innovation processes. Due to the complexity of the research questions, disciplinary investigations are complemented by inter- and transdisciplinary approaches.

Head of Institute: Prof. Dr. Klaus Müller
DOCTORAL RESEARCHERS & POSTDOCS

DOCTORAL RESEARCHERS, NEW IN 2016

Bachmann, Denise
Inst. of Landscape Biogeochemistry
Supervisor at ZALF: Dr. Eileen Kröber, PD Dr. Steffen Kolb
Humboldt-Universität zu Berlin
Supervisor: Prof. Dr. Sonoko D. Bellingrath-Kimura

Cavael, Ulrike
Inst. of Socio-Economics
Supervisor at ZALF: Katharina Diehl
University not yet determined
Supervisor not yet determined

Früh, Linus
Inst. of Land Use Systems
Supervisor at ZALF: Dr. Doreen Walther
Universität Greifswald
Supervisor: PD Dr. Helge Kampen

Huynh, Thanh H.
Inst. of Land Use Systems
Supervisor at ZALF: Dr. Angelika Wurbs
Humboldt-Universität zu Berlin
Supervisor: Prof. Dr. Klaus Müller

Kerkow, Antje
Inst. of Land Use Systems and Inst. of Landscape Systems Analysis
Supervisor at ZALF: Dr. Doreen Walther, Dr. Ralf Wieland
Freie Universität Berlin
Supervisor: Dr. Franz Hoelker, Prof. Dr. Jonathan Jeschke

Krause, Marlen
Inst. of Socio-Economics
Supervisor at ZALF: Prof. Dr. Bettina Matzdorf
University not yet determined
Supervisor: not yet determined

Mgeni, Charles
Inst. of Socio-Economics
Supervisor at ZALF: Dr. Stefan Sieber
Humboldt-Universität zu Berlin
Supervisor: Prof. Dr. Klaus Müller

Naqvi, Syed Mohsin R.
Inst. of Socio-Economics
Supervisor at ZALF: Prof. Dr. Harald Kächele
Humboldt-Universität zu Berlin
Supervisor: Prof. Dr. Klaus Müller

POSTDOCS, NEW IN 2016

Bloch, Ralf
Inst. of Land Use Systems

Buchen, Caroline
Inst. of Landscape Biogeochemistry

Hamidov, Ahmad
Inst. of Land Use Systems

Lerche, Sandra
Inst. of Landscape Biogeochemistry

Pätzig, Marlene
Inst. of Socio-Economics

Techen, Anja
Inst. of Land Use Systems

Susman, Roni
Inst. of Socio-Economics
Supervisor at ZALF: Prof. Dr. Klaus Müller, apl. Prof. Dr. Thomas Weith
University of Potsdam
Supervisor: apl. Prof. Dr. Thomas Weith

Thai, Thi H.
Inst. of Land Use Systems
Supervisor at ZALF: Dr. Dietmar Barkusky, Dr. Monika Joschko
Humboldt-Universität zu Berlin
Supervisor: Prof. Dr. Sonoko D. Bellingrath-Kimura

Tsutsikkh, Elena
Inst. of Landscape Systems Analysis
Supervisor at ZALF: Dr. Claas Nendel
Humboldt-Universität zu Berlin
Supervisor: Prof. Dr. Jutta Zeitz

Weltin, Meike
Inst. of Socio-Economics
Supervisor at ZALF: Dr. Ingo Zasada
University of Rostock
Supervisor: Prof. Dr. Silke Hüttel

Zulfiqar, Hasan
Inst. of Socio-Economics
Supervisor at ZALF: Prof. Dr. Harald Kächele
Humboldt-Universität zu Berlin
Supervisor: Prof. Dr. Klaus Müller
SCHOLARSHIP HOLDERS

<table>
<thead>
<tr>
<th>Name</th>
<th>Country</th>
<th>Institute</th>
<th>Sponsorship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arodudu, Oludunsin T.</td>
<td>Nigeria</td>
<td>Land Use Systems</td>
<td>Marie Skłodowska-Curie Fellowship</td>
</tr>
<tr>
<td>Batunacun</td>
<td>P. R. China</td>
<td>Landscape Systems Analysis</td>
<td>Chinese Scholarship Council</td>
</tr>
<tr>
<td>Brunet Navarro, Pau</td>
<td>Spain</td>
<td>Landscape Systems Analysis</td>
<td>Marie Skłodowska-Curie Fellowship</td>
</tr>
<tr>
<td>Chen, Cheng</td>
<td>P. R. China</td>
<td>Socio-Economics</td>
<td>Chinese Scholarship Council</td>
</tr>
<tr>
<td>Egamberdieva, Dr. Difuza</td>
<td>Usbekistan</td>
<td>Landscape Biogeochemistry</td>
<td>Alexander von Humboldt-Foundation</td>
</tr>
<tr>
<td>Gao, Yongbo</td>
<td>P. R. China</td>
<td>Landscape Hydrology</td>
<td>Chinese Scholarship Council</td>
</tr>
<tr>
<td>Hampf, Anna C.</td>
<td>Germany</td>
<td>Landscape Systems Analysis</td>
<td>Heinrich-Böll-Stiftung</td>
</tr>
<tr>
<td>Iqbal, Muhammad A.</td>
<td>Pakistan</td>
<td>Landscape Systems Analysis</td>
<td>Alexander von Humboldt-Foundation</td>
</tr>
<tr>
<td>Li, Qirui</td>
<td>P. R. China</td>
<td>Socio-Economics</td>
<td>Chinese Scholarship Council</td>
</tr>
<tr>
<td>Mahgoub, Prof. Dr. Emadeldin</td>
<td>Tansania</td>
<td>Socio-Economics</td>
<td>DAAD</td>
</tr>
<tr>
<td>Naqvi, Syed M. R.</td>
<td>Pakistan</td>
<td>Socio-Economics</td>
<td>50 Overseas Scholarships, University Agriculture, Faisalabad</td>
</tr>
<tr>
<td>Nongpat, Chaichana</td>
<td>Thailand</td>
<td>Land Use Systems</td>
<td>Tokyo University of Agriculture and Technology</td>
</tr>
<tr>
<td>Sam, Anu S.</td>
<td>India</td>
<td>Socio-Economics</td>
<td>DAAD</td>
</tr>
<tr>
<td>Selecky, Tomas</td>
<td>Germany</td>
<td>Land Use Systems</td>
<td>DBU</td>
</tr>
<tr>
<td>Sun, Jin</td>
<td>P. R. China</td>
<td>Socio-Economics</td>
<td>Chinese Scholarship Council</td>
</tr>
<tr>
<td>Susman, Roni</td>
<td>Indonesia</td>
<td>Socio-Economics</td>
<td>Indonesian Endowment Fund for Education</td>
</tr>
<tr>
<td>Wambura, Frank J.</td>
<td>Tansania</td>
<td>Landscape Hydrology</td>
<td>DAAD</td>
</tr>
<tr>
<td>Wang, Dr. Meng</td>
<td>P. R. China</td>
<td>Landscape Systems Analysis</td>
<td>Chinese Scholarship Council</td>
</tr>
<tr>
<td>Weißhuhn, Peter</td>
<td>Germany</td>
<td>Land Use Systems</td>
<td>DBU</td>
</tr>
<tr>
<td>Zulfiqar, Hasan</td>
<td>Pakistan</td>
<td>Socio-Economics</td>
<td>University of Agriculture, Faisalabad</td>
</tr>
</tbody>
</table>
DOCTORAL THESES

Abbas, Azhar
Inst. of Socio-Economics
Socioeconomic impacts of climatic extremes and their management: a case study of floods in Pakistan with special reference to aspects of mitigation, coping strategies and adaptation of farming sector
Supervisor at ZALF: Prof. Dr. Harald Kächele
Humboldt-Universität zu Berlin
Supervisor: Prof. Dr. Klaus Müller

Badorreck, Annika
Inst. of Soil Landscape Research
Multidimensional visualization of preferential flow pathways using neutron and X-ray radiation
Supervisor at ZALF: PD Dr. Horst Gerke
Brandenburg University of Technology
Cottbus-Senftenberg
Supervisor: Prof. Dr. Dr. h. c. Reinhard F. Hüttl

Bloch, Ralf
Inst. of Land Use Systems
The vulnerability of organic farming to climate change effects in the Federal State of Brandenburg, Germany
Supervisor at ZALF: Dr. Johann Bachinger
University of Kassel
Supervisor: Prof. Dr. Jürgen Heß

Hommel, Robert
Inst. of Landscape Biogeochemistry
The interrelation of carbon and water balance in beech-dominated forests — from leaf level water use efficiency to stand and area scale assessments
Supervisor at ZALF: Dr. Zachary Kayler
Humboldt-Universität zu Berlin
Supervisor: Prof. Dr. Arthur Geßler

Krikser, Thomas
Inst. of Socio-Economics
The contribution of foundations to ecofriendly and sustainable development
Supervisor at ZALF: Prof. Dr. Bettina Matzdorf
Leuphana University Lüneburg
Supervisor: Prof. Dr. Gerd Michelsen

Kühdorf, Katja
Inst. of Landscape Biogeochemistry
Diversity and identification of mycorrhizal fungi of Tropical Comarostaphylis arbutoides
Supervisor at ZALF: Dr. Babette Münzenberger
Brandenburg University of Technology
Cottbus-Senftenberg
Supervisor: Prof. Dr. Dr. h. c. Reinhard F. Hüttl

Oyeogbe, Anthony I.
Inst. of Landscape Systems Analysis
Parameterising MONICA for cotton: calibration and validation for rainfed cotton in Nigeria
Supervisor at ZALF: Dr. Claas Nendel
Indian Agricultural Research Institute, New Delhi
Supervisor: Prof. Dr. Patel Amarnath

Papendiek, Franka
Directorate
Fodder legumes for green biorefineries: a perspective for sustainable agricultural production systems
Supervisor at ZALF: Dr. Hans-Peter Ende,
Prof. Dr. Hubert Wiggering
University of Potsdam
Supervisor: Prof. Dr. Hubert Wiggering

Zielke, Dorothee
Inst. of Land Use Systems
Population genetics and distribution of the invasive mosquito Aedes japonicus japonicus (Diptera: Culicidae) in Germany and Europe
Supervisor at ZALF: Dr. Doreen Walther
University of Bonn
Supervisor: PD Dr. Helge Kampen
GUESTS & FELLOWS

GUESTS WITH RESEARCH STAYS AT ZALF

Abbas, Azhar
Inst. of Socio-Economics
University of Agriculture, Faisalabad, Pakistan

Ajeel, Ali
Inst. of Soil Landscape Research
Mediterranean Agronomic Institute of Bari, Italy

Ankit, Kumar
Inst. of Land Use Systems
Indian Institute of Technology, Kanpur, India

Arshad, Muhammad
Inst. of Socio-Economics
University of Agriculture, Faisalabad, Pakistan

Battisti, Rafael
Inst. of Landscape Systems Analysis
University of São Paulo, Brazil

Bender, Fabiani D.
Inst. of Landscape Systems Analysis
University of São Paulo, Brazil

Chaichana, Nongpat
Inst. of Land Use Systems
University of Tokyo, Faculty of Agriculture and Technology, Japan

Chen, Cheng
Inst. of Socio-Economics
China Scholarship Council, P. R. China

Dam, Thi H. T.
Inst. of Socio-Economics
Hue Agriculture and Forestry University, Vietnam

Gholami, Dr. Shaieste
Inst. of Landscape Biogeochemistry
University of Razi, Iran

Iturri, Dr. Antonela
Inst. of Soil Landscape Research
National University of La Pampa, Santa Rosa, Argentina

Jurajev, Umid
Inst. of Landscape Hydrology
Tashkent Inst. of Irrigation and Melioration, Uzbekistan

Kimaro, Dr. Anthony
Inst. of Socio-Economics
World Agroforestry Centre, Tanzania

Li, Quirui
Inst. of Socio-Economics
China Agricultural University, P. R. China

Mahgoub, Assoc. Prof. Dr. Emadeldin
Inst. of Socio-Economics
Agricultural Research Corporation, Sudan

Mendizabal Cortes, Alejandra D.
Inst. of Landscape Systems Analysis
University of São Paulo, Brazil

Omari, Richard A.
Inst. of Land Use Systems
University of Tokyo, Faculty of Agriculture and Technology, Japan

Ramazonov, Umar
Inst. of Landscape Hydrology
Tashkent Institute of Melioration and Irrigation, Uzbekistan

Sam, Anu S.
Inst. of Socio-Economics
International Crops Research Inst. for the Semi-Arid Tropics, India

Seitz, Prof. Dr. William
Inst. of Landscape Systems Analysis
Texas A&M University, USA

Turturro, Antonietta C.
Inst. of Soil Landscape Research
University of Bari Aldo Moro and Mediterranean Agronomic Inst. of Bari, Italy

Wang, Meng
Inst. of Landscape Systems Analysis
China Agricultural University Beijing, P. R. China

FELLOWS

Altieri, Prof. Dr. Miguel
Inst. of Land Use Systems
University of California, Berkeley, USA

Burkhard, PD Dr. habil. Benjamin
Inst. of Land Use Systems
Leibniz Universität Hannover, Germany

Geßler, Prof. Dr. Arthur
Inst. of Landscape Biogeochemistry
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland

Kimaro, Dr. Anthony
Inst. of Socio-Economics
World Agroforestry Centre (ICRAF), Tanzania

Kleber, Prof. Dr. Markus
Inst. of Soil Landscape Research
Oregon State University, Corvallis, USA

Miller, Prof. Dr. Bradley A.
Inst. of Soil Landscape Research
Iowa State University, Department of Agronomy, Ames, USA

Nautiyal, Prof. Dr. Sunil
Inst. of Socio-Economics
Institute for Social and Economic Change, Bangalore, India

Oguntunde, Prof. Dr. Philip Gbenro
Inst. of Landscape Hydrology
Federal University of Technology, Akure (FUTA), Nigeria
NEW THIRD PARTY FUNDED PROJECTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Duration</th>
<th>Funding</th>
<th>Institutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridging in biodiversity science</td>
<td>March 2016 – February 2019</td>
<td>BMBF</td>
<td>Landscape Biogeochemistry</td>
</tr>
<tr>
<td>Concurrent evolution of erosion rates, weathering and profile development of agricultural soils: a 4-D Approach</td>
<td>February 2016 – January 2018</td>
<td>University of Zurich—Cooperation</td>
<td>Landscape Hydrology</td>
</tr>
<tr>
<td>European Agricultural Knowledge and Innovation Systems (AKIS) towards innovation-driven research in smart machines and systems</td>
<td>March 2016 – August 2018</td>
<td>EU Horizon 2020</td>
<td>Soil Landscape Research</td>
</tr>
<tr>
<td>Identification and mapping of mosquitoes in northern Norway</td>
<td>April 2016 – April 2017</td>
<td>EU Horizon 2020</td>
<td>Land Use Systems</td>
</tr>
<tr>
<td>Inner-city development and climate adaptation: from urban land use conflicts to regional synergies</td>
<td>March 2016 – December 2016</td>
<td>Federal State of North Rhine Westphalia, LANUV</td>
<td>Land Use Systems</td>
</tr>
<tr>
<td>Innovative approaches to planning and implementing nature-based solutions for resilient development of metropolitan regions</td>
<td>April 2016 – March 2021</td>
<td>BMBF (SOEF-Junior Research Group)</td>
<td>Socio-Economics</td>
</tr>
<tr>
<td>Laboruntersuchungen mittels Heliuminkubationsmethode zur N₂O / N₂-Freisetzung aus der Denitrifikation nach einer N-Düngung</td>
<td>March 2016 – December 2016</td>
<td>Stickstoff Werke Priesteritz GmbH</td>
<td>Landscape Biogeochemistry</td>
</tr>
<tr>
<td>Modular treatment and monitoring of wastewater for agricultural water reuse</td>
<td>September 2016 – August 2019</td>
<td>BMBF</td>
<td>Landscape Hydrology</td>
</tr>
<tr>
<td>Nachhaltig intensivierte Anbau- und Verarbeitungsprozesse zur sicheren Produktion von Spreewälder Gurken g. g. A. in höchster Qualität</td>
<td>December 2016 – February 2018</td>
<td>EU (European Innovation Partnership, EIP), Federal State of Brandenburg</td>
<td>Landscape Biogeochemistry</td>
</tr>
<tr>
<td>N-Stabilisierung und wurzelnahe Platzierung als innovative Technologien zur Optimierung der Resourceneffizienz bei der Harnstoffdüngung</td>
<td>July 2016 – July 2019</td>
<td>BMEL</td>
<td>Landscape Biogeochemistry</td>
</tr>
<tr>
<td>Productivity vs. sustainability: Towards better support of viable and sustainable EU farms</td>
<td>August 2016 – March 2017</td>
<td>EU (European Parliament, contract)</td>
<td>Land Use Systems</td>
</tr>
<tr>
<td>Title</td>
<td>Duration</td>
<td>Funding</td>
<td>Institutes</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>The effect of food value chain upgrading strategies on agricultural productivity and incomes in Tanzania: Opportunities for optimized nutritional and food security for local food systems</td>
<td>May 2016 – July 2019</td>
<td>BMEL</td>
<td>Socio-Economics</td>
</tr>
<tr>
<td>The vulnerability of ecosystems: how to assess the exposure and sensitivity to biotope changes and the adaptive capacity of biocoenosis</td>
<td>January 2016 – June 2019</td>
<td>DBU</td>
<td>Land Use Systems</td>
</tr>
<tr>
<td>Transfer of the smartphone based nature protection app (NatApp) into the agricultural and nature conservation practice</td>
<td>April 2016 – March 2017</td>
<td>DBU</td>
<td>Land Use Systems</td>
</tr>
<tr>
<td>Unlocking the potential in assessing cropping upgrading strategies for food security in Dodoma, Tanzania</td>
<td>May 2016 – April 2019</td>
<td>BMEL</td>
<td>Land Use Systems</td>
</tr>
<tr>
<td>Update of the soil description of soil monitoring plots in the state of Brandenburg</td>
<td>May 2016 – November 2016</td>
<td>LfU – Landesamt für Umwelt, Brandenburg</td>
<td>Soil Landscape Research</td>
</tr>
<tr>
<td>Viable intensification of agricultural production through sustainable landscape transition</td>
<td>May 2016 – April 2019</td>
<td>EU Horizon 2020 ERA-NET Cofund</td>
<td>Socio-Economics</td>
</tr>
<tr>
<td>Zukunftsfähige Technologien und Dienstleistungen für das Wasser- und Ressourcenmanagement am oberen Yangtze, Sichuan</td>
<td>November 2016 – July 2017</td>
<td>BMBF</td>
<td>Landscape Hydrology</td>
</tr>
</tbody>
</table>
COOPERATION (SELECTED)

NATIONAL UNIVERSITIES

- Christian-Albrechts-Universität Kiel
- Friedrich-Schiller-Universität Jena
- Georg-August-Universität Göttingen
- Justus-Liebig-Universität Gießen
- Karlsruher Institut für Technologie
- Leibniz Universität Hannover
- Technische Universität Berlin
- Technische Universität Dresden
- Technische Universität München
- Universität Bayreuth
- Universität Bonn
- Universität Hohenheim
- Universität Kassel
- Universität Koblenz-Landau
- Universität Rostock

COOPERATION THROUGH JOINT APPOINTMENTS, INFRASTRUCTURE USE AND SUPERVISION OF EARLY CAREER RESEARCHERS

- Brandenburgische Technische Universität Cottbus-Senftenberg
- Ernst-Moritz-Arndt-Universität Greifswald
- Fachhochschule Eberswalde
- Freie Universität Berlin
- Humboldt-Universität zu Berlin
- Martin-Luther-Universität Halle-Wittenberg
- Universität Potsdam

- Umweltforschungszentrum Leipzig-Halle

and 32 Leibniz Institutes in 5 Leibniz Research Alliances

OTHER GOVERNMENTAL AND NON-GOVERNMENTAL INSTITUTIONS (SELECTED)

- Bundesanstalt für Geowissenschaften und Rohstoffe
- Bundesanstalt für Gewässerkunde
- Bundesforschungsanstalt für Forst- und Holzwirtschaft
- Deutscher Bauernverband
- Fachagentur Nachwachsende Rohstoffe
- Landesamt für Ländliche Entwicklung, Landwirtschaft und Flurneuerordnung Brandenburg
- Landesamt für Umwelt, Gesundheit und Verbraucherschutz Brandenburg
- Landesforschungsanstalt für Landwirtschaft und Fischerei Mecklenburg-Vorpommern
- Landwirtschaftskammer Niedersachsen
- Landwirtschaftskammer Nordrhein-Westfalen
- Marktgesellschaft mbH der Naturland Betriebe
- Ministerium für Ländliche Entwicklung, Umwelt und Landwirtschaft des Landes Brandenburg
- Ministerium für Landwirtschaft, Umwelt und Verbraucherschutz Mecklenburg-Vorpommern
- Öko-Dorf Brodowin e. V. Gisela und Werner Upmeier Stiftung
- Paulinenauer Arbeitskreis Grünland und Futterwirtschaft e. V.

INTERNATIONAL UNIVERSITIES

- Aarhus University, Denmark
- Catholic University Louvain, Belgium
- Eidgenössische Technische Hochschule Zürich, Switzerland
- Federal University of Goiás, Brazil
- Free University Amsterdam, Netherlands
- Ghent University, Belgium
- Sokoine University of Agriculture, Tanzania
- Tokyo University of Agriculture and Technology, Japan
- National University of La Pampa at Santa Rosa, Argentina
- University of Florida, USA
- University of Natural Resources and Life Sciences Vienna, Austria
- University Vienna, Austria
- Universität Zürich, Switzerland
- Wageningen University, Netherlands
- Warsaw University of Life Sciences, Poland

NON-UNIVERSITY RESEARCH INSTITUTIONS

- Academy of Sciences of the Czech Republic, Czech Republic
- Academy of Sciences of the Republic of Tajikistan
- Baraev Scientific Center for Cereal Production, Kazakhstan
- Brazilian Agricultural Research Corporation Brasilia, Brazil
- Brazilian Bioethanol Science and Technology Laboratory, Brazil
- Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft, Switzerland
- National Institute for Agricultural Research Paris, France
- Natural Resources Institute, Finland
TEACHING

BRANDENBURG UNIVERSITY OF TECHNOLOGY
COTTBUS-SENFTENBERG

• Agrarökologie
 Vorlesung, SS 2016
• Nachhaltige Waldbewirtschaftung
 Vorlesung, SS 2016
• 10 Jahre Leipzig Charta: Wie integriert ist Stadtentwicklungspianung heute?
 Vorlesung, WS 2016 / 2017

CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL

• Strategien zum nachhaltigen Boden- und Umweltmanagement
 Lecture, SS 2016

FREIE UNIVERSITÄT BERLIN

• Zur Quartär- und Hydrogeologie Brandenburgs und Westpolens
 Seminar, SS 2016
• Landschaftswasserhaushalt von Berlin und Brandenburg
 Lecture, WS 2016 / 2017
• International Master’s Program „Environmental Earth Sciences“
 Seminar, WS 2016 / 2017

EBERSWALDE UNIVERSITY FOR SUSTAINABLE DEVELOPMENT

• Pflanzenernährung im ökologischen Landbau
 Lecture, WS 2016 / 2017
• Monitoring und Indikatoren
 Lecture, WS 2016 / 2017
• Allgemeine Bodenkunde – Grundlagen
 Lecture, WS 2016 / 2017
• Bodenlandschaft und Stoffhaushalt
 Seminar, SS 2016
• Umwelt, Gesellschaft, Nachhaltigkeit
 Lecture, WS 2016 / 2017
• Einführung in die Ökonomik, Kurs Umweltökonomie
 Lecture, WS 2016 / 2017
• Agrar- und Umweltpolitik
 Lecture, WS 2016 / 2017
• Politik und Organisation der ökologischen Agrar- und Ernährungswirtschaft
 Lecture, WS 2016 / 2017
• Regionales Stoffstrommanagement und Kreislaufwirtschaft
 Lecture, SS 2016

HUMBOLDT UNIVERSITÄT ZU BERLIN

• Modellierung pflanzlicher Systeme
 Lecture, WS 2016 / 2017
• Natural Ressources Management
 Lecture, WS 2016 / 2017
• Forschungsmethoden im Pflanzenbau
 Lecture, SS 2016
• Theory and models for an integrated analysis of ecosystem services
 Seminar, SS 2016

LEIBNIZ UNIVERSITÄT HANNOVER

• Naturschutz- und Umweltökonomie
 Lecture, SS 2016

TECHNISCHE UNIVERSITÄT BERLIN

• Bodenmesstechnik
 Lecture, SS 2016

UNIVERSITY OF POTSDAM

• Einführung in die Hydrochemie
 Lecture, SS 2016
• Bodenlandschaften
 Lecture, WS 2016 / 2017
• Landschaftspraktikum „Bodenlandschaftsanalyse in der Uckermark“
 Seminar, SS 2016
• Regionalentwicklung und Landschaftswandel in Europa II – Deutschland und Polen im Vergleich
 Seminar, SS 2016
• Regionalentwicklung und Landschaftswandel in Europa
 Seminar, WS 2016 / 2017
• Angewandte Mathematik und Statistik für Ökologen
 Lecture, WS 2016 / 2017

UNIVERSITÄT ROSTOCK

• Umweltökonomie
 Lecture, SS 2016
OFFICES & TASKS (SELECTED)

Augustin, Jürgen
- Editorial board member at the Emission Factor Database der TFI (IPCC)

Bachinger, Johann
- Mitglied im wiss. Beirat des Biosphärenreservates Spreewald
- Mitglied der Expertenrunde für Forschung und Züchtung des Demeter e. V.
- Vertreter des ZALF in der AG Ökologischer Landbau (Senat der Bundesforschungseinrichtungen)

Berger, Gert
- Mitglied der AG Pflanzenschutz und Biodiversität (Bundesanstalt für Landwirtschaft und Ernährung)
- Mitglied im Fachbeirat Naturhaushalt und Nachhaltiger Pflanzenbau (BVL)

Dalchow, Claus
- Editorial advisory board member at Landscape Online

Eulenstein, Frank
- Sprecher der AGs Nachwachsende Rohstoffe und Nährstoff-Effizienz im Pflanzenbau (DWA)
- Beiratsmitglied der Gemeinnützigen Landbauforschungsgesellschaft Sottorf mbH

Ewert, Frank
- Jury-Mitglied im Expertenbeirat Agrarsysteme der Zukunft (BMBF)
- Mitglied der Leitungsgruppe Forschung (BMEL)
- Gutachter zur Forschungsförderung (BMBF), zum Förderprogramm des Leibniz-Instituts für Agrartechnik und Landwirtschaft (ITL) und zum Themengebiet Umwelt (Stiftung Mercator Schweiz)
- Assessment panel member of the Biotechnology and Biological Sciences Research Council, UK
- Co-leader of the wheat modelling team Agricultural Model Intercomparison and Improvement Project (AgMIP)
- Co-chair of the expert working group on plant modelling (Wheat Initiative)
- Editorial board member at Agriculture, Ecosystems & Environment / Field Crops Research / Nature Scientific Reports / European Journal of Agronomy

Gaasch, Nadin
- Mitglied der Landesarbeitsgruppe Berlin/Brandenburg / Mecklenburg-Vorpommern (ARL)

Gerke, Horst
- Vice-chair of the Soil Systems Science Division, Subdivision Soil Physics (EGU)
- Co-editor at Journal of Hydrology and Hydromechanics

Hagemann, Ulrike
- Stellv. Vorsitzende der AG Bodengase (DBG)
- Guest associate editor at Journal of Plant Nutrition and Soil Science

Heinrich, Uwe
- Vertreter des ZALF in der AG Geoinformation (BMEL)
- Vertreter des ZALF im Verband der Geoinformationswirtschaft Berlin / Brandenburg
- Vertreter des ZALF zum Klimanavigator des Climate Service Center (Helmholtz-Zentrum Geesthacht)

Helming, Katharina
- Expert for Horizon 2020 (EU)
- Editorial board member at Agronomy for Sustainable Development / Journal of Soil and Water Conservation / Land

Hierold, Wilfried
- Mitglied im Naturschutzbeirat des Landkreises Barnim

Kächele, Harald
- Chairmanship at the Global Nature Fund
- Stellvertretender Vorsitzender im Naturschutzbeirat des Landes Brandenburg (MLUL Brandenburg)
- Vorsitzender der Deutschen Umwelthilfe e. V.
- Beiratsmitglied der Berliner Stadtteilorganisationen
- Stiftungsratsvorsitzender der Tropenwaldstiftung Oro Verde

Kaiser, David B.
- Mitglied im Normenausschuss Wasserwesen 119, Ak Bioverfügbarkeit (DIN)

Kalettka, Thomas
- Chairmanship at the European Pond Conservation Network
- Mitglied der AG Gewässerschutz und Pflanzenschutz (Forum zum Nationalen Aktionsplan Pflanzenschutz)
- Beiratsmitglied im F+E-Vorhaben Umsetzung des Nationalen Aktionsplans zu nachhaltiger Anwendung von Pestiziden, AG Gewässerschutz und Pflanzenschutz (UBA)

Kersebaum, Kurt-Christian
- Delegate for the management committee and working group head bei COST ES1106, Assessment of European Agriculture Water Use and Trade under Climate Change (EU/ESF/COST)
- Associate editor at International Journal of Biometeorology / Field Crops Research

Lana, Marcos
- Founding member of Agroecology Europe
- Member and representative of Germany at Latin-American and Caribbean Scientific Society of Agroecology
Lischeid, Gunnar
- Sprecher der Expertengruppe Umwelt-System-Theorien der Allianz-AG Infrastrukturen in der terrestrischen Forschung (DFG u. a.)

Matzdorf, Bettina
- Gutachterin beim Wissenschaftsrat, AG zur Evaluierung des Inst. für Sozial-ökologische Forschung
- Beiratsmitglied der Innovationsgruppe Ginkoo

Mirschel, Wilfried
- Editorial board member at European Agrophysical Journal

Müller, Klaus
- Referee for GAIA / Ecology and Society / Konjunkturpolitik / Jahrbuch für Regionalwissenschaften
- Gutachter beim Schweizerischen Nationalfonds
- Sachverständiger in der Enquetekommission 6/1 Zukunft der ländlichen Regionen vor dem Hintergrund des demografischen Wandels (SPD-Landtagsfraktion Brandenburg)
- Mitglied im Ausschuss Siedlungsstruktur / Natur und Umwelt der Planungsgemeinschaft Oderland-Spree
- Vorsitzender des Naturpark-Kuratoriums Märkische Schweiz

Nendel, Claas
- Guest editor at Regional Environmental Change / Agricultural Systems
- Editorial board member at European Journal of Agronomy

Pickert, Jürgen
- Mitglied der AG Grünland Definition und Klassifizierung (European Grassland Federation)
- Mitglied der Steuerungsgruppe Grünland der Deutschen Agrarforschungs Allianz
- Mitglied des Ausschusses für Grünland und Futterbau (DLG)
- Vorstandsmitglied des Deutschen Maiskomitees
- Redaktionsbeirat bei Mais (Deutsches Maiskomitee)
- Vorstandsmitglied des Paulinenauer AK Grünland und Futterwirtschaft e. V.

Piorr, Annette
- Expert at the Swedish research program FORMAS, Panel Use of Natural Resources (Swedish National Research Council)
- Expert for the EU

Sieber, Stefan
- Editorial board member at Food Security

Siebert, Rosemarie
- Gutachterin für das BMBF
- Mitglied der ARL
- Referee for Sociologia Ruralis / Land Use Policy
- Gutachterin bei der Wissenschaftlichen Kommission Niedersachsen

Strauß, Christian
- Expert for BMBF, EU, COST
- Geschäftsführer der Landesarbeitsgemeinschaft Berlin/Brandenburg / Mecklenburg-Vorpommern der ARL
- Sprecher der Regionalgruppe Berlin-Brandenburg der Vereinigung für Stadt-, Regional- und Landesplanung
- Mitglied der AG Wasser bewegt Berlin (Stiftung Zukunft Berlin)
- Referee for Environment, Development and Sustainability

Ulrich, Andreas
- Editorial board member at European Journal of Soil Biology
- Beauftragter für biologische Sicherheit im Länderinstitut für Bienenkunde, Hohen Neuendorf

Walther, Doreen
- Mitglied im Bundesfachausschuss des Naturschutzbunds Deutschland
- Stellv. Leiterin des AK Deutscher Dipterologen
- Vorstandsmitglied der Deutschen Gesellschaft für Medizinische Entomologie und Acaarologie
- Editorial board member at Studia dipterologica
- Koordinatorin für Europa im Forschungsnetzwerk Simuliidae

Weith, Thomas
- Sprecher der ARL-Landesarbeitsgemeinschaft Berlin/Brandenburg / Mecklenburg-Vorpommern
- Member of the international expert group Habitat III (International Society for City and Regional Planners)
- Editorial board member at Zeitschrift für Evaluation

Wieland, Ralf
- Beiratsmitglied der FG Simulation in Umwelt und Geowissenschaften, Medizin und Biologie der AG Simulation (Gesellschaft für Informatik)

Willms, Matthias
- Referee for Journal of Plant Nutrition and Soil Science

Wulf, Monika
- Associate editor at Applied Vegetation Science / Journal of Vegetation Science
- Mitglied im Fachkollegium Ökologie der Agrarlandschaften (DFG)

Wurbs, Angelika
- 2. Sprecherin des AK Europa (Leibniz Association)

Zander, Peter
- Editorial boardmember at Agricultural Systems

Zasada, Ingo
- Editorial board member at Land Use Policy

Dumack, K., Müller, M., Bonkowski, M. (2016) Description of Lecythidium terestris sp. nov. (Chlamydomphylidae, Cercozoa), a soil dwelling Protist feeding on fungi and algae. Protiest 167, 2, 93–105.

Li, H., Li, T., Yao, M., Li, J., Zhang, S., Wirth, S., Cao, W., Lin, Q., Li, X. (2016) Pika gut microbiota may select for rare but diverse environmental bacteria. Frontiers in Microbiology 7, Article 1269.

Li, H., Li, T., Yao, M., Li, J., Zhang, S., Wirth, S., Cao, W., Lin, Q., Li, X. (2016) Pika gut microbiota may select for rare but diverse environmental bacteria. Frontiers in Microbiology 7, Article 1269.

ABBREVIATIONS

ACTA Association de Coordination Technique Agricole
AgMIP Agricultural Model Intercomparison and Improvement Project
ARL Akademie für Raumforschung und Landesplanung
ATB Leibniz-Inst. für Agrartechnik und Bioökonomie/Leibniz Inst. for Agricultural Engineering and Bioeconomy
BLF Inst. für Bodenlandschaftsforschung/Inst. of Soil Landscape Research
BMF Bundesministerium für Bildung und Forschung/Federal Ministry of Education and Research
BMEL Bundesministerium für Ernährung und Landwirtschaft/Federal Ministry of Food and Agriculture
BVL Bundesamt für Verbraucherschutz und Lebensmittelsicherheit/Federal Office of Consumer Protection and Food Safety
CEMA Comité Europeen des groupements de constructeurs du Machinisme Agricole
COST — European Cooperation in Science and Technology
Delphy Delphy, Wageningen, Niederlande
DFG Deutsche Forschungsgemeinschaft
DIN Deutsches Inst. für Normung /German Inst. for Standardization
DIR Direktorat /Directorate
DLG Deutsche Landwirtschaftsgesellschaft /German Agricultural Society
DLO Stichting Dienst Landbouwkundig Onderzoek
EGU European Geophysical Union
ERA-NET European Research Area Network
FACE Agriculture, Food Security and Climate Change
FHG Fraunhofer-Gesellschaft
FNR Fachagentur Nachwachsende Rohstoffe
FONA Forschung für nachhaltige Entwicklung /Research for Sustainable Development
FRCUma Federation regionale des cooperatives d’utilisation de materiel agricole del ouest de la France
FU Berlin Freie Universität Berlin
FZ Jülich Forschungszentrum Jülich
GRF German Research Foundation
HU Berlin Humboldt University zu Berlin
ICRAF The International Council for Research in Agroforestry /World Agroforestry Centre
ICRISAT Int. Crops Research Inst. for the Semi-Arid Tropics, Patancheru, India
iCROP International Crop Modelling Symposium
IGB Leibniz-Inst. für Gewässerökologie und Binnenfischerei/Leibniz-Inst. of Freshwater Ecology and Inland Fisheries
IHP Leibniz-Inst. für innovative Mikroelektronik /Innovations for High Performance Microelectronics
INIA Iniciativas Innovadoras SAL
ISI Fraunhofer-Inst. für System- und Innovationsforschung/Fraunhofer Inst. for Systems and Innovation Research
IZW Leibniz-Inst. für Zoo- und Wildtierforschung/Leibniz Inst. for Zoo and Wildlife Research
JPI Joint Programming Initiative
KIT-ITAS Inst. für Technikfolgenabschätzung und Systemanalyse/Inst. for Technology Assessment and Systems Analysis
LBSL Inst. für Landschaftsbiogeochemie /Inst. of Landscape Biogeochemistry
LSA Inst. für Landnutzungssystemanalyse/Inst. of Landscape Systems Analysis
LSE Inst. für Landnutzungssystemanalyse/Inst. of Land Use Systems
LWH Inst. für Landschaftswasserhaltung/Inst. of Landscape Hydrology
MACSUR Modeling European Agriculture with Climate Change for Food Security
MLUL Ministerium für Umwelt, Gesundheit und Verbraucherschutz des Landes Brandenburg /Ministry of Rural Development, Environment and Agriculture of the Federal State of Brandenburg
MWFK Ministerium für Wissenschaft, Forschung und Kultur des Landes Brandenburg
PIK Potsdam-Inst. für Klimafolgenforschung/Potsdam Inst. for Climate Impact Research
SAW Senatsausschuss Wettbewerb der Wissenschaftsgemeinschaft G. W. Leibniz/The Senate Competition Committee
SO Inst. für Sozioökonomie/Inst. of Socio-Economics
TP Teilprojekt
TU Berlin Technische Universität Berlin
UMSICHT Fraunhofer-Institut für Umwelt- , Sicherheits-, und Energietechnik/Fraunhofer Inst. for Environmental, Safety, and Energy Technology
UN Vereinte Nationen/United Nations
UVP-Gesellschaft Gesellschaft für die Prüfung der Umweltverträglichkeit
ZWM Zentrum für Wissenschaftsmanagement /Center for Science and Research Management
IMPRINT

Publisher
Executive Board: Frank Ewert, Cornelia Rosenberg

Editors
Hendrik Schneider
Claus Dalchow

Layout concept
Novamondo

Layout and typesetting
Nur Mut, Hannes Schulze

Copy editing
Ulrike Hagemann

Printing
Laserline Druckzentrum Berlin KG

This annual report is available as PDF or may be ordered in print.

Leibniz Centre for Agricultural Landscape Research (ZALF)
Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e. V.

Eberswalder Straße 84
15374 Müncheberg
Germany

www.leibniz-zalf.de

T +49 (0)33432 | 82 200
F +49 (0)33432 | 82 223
E zalf@zalf.de

IMAGE SOURCES

.marqs/photocase.de
markusspiske/photocase.de
Andreas Krone
MethanolSINK
Frieder Graef, ZALF
Carlos Miguel Acame Poveda, ZALF
Smart AKIS Projekt
Annette Piorr, ZALF
Julian Martitz
Gunnar Lischeid, ZALF
Anu Susan Sam
Marc Wehrhan, ZALF
Pablo Reveles
Dr. Thomas Kalettka, ZALF
https://sustainabledevelopment.un.org/sdgs

Cover Hadijah A. Mbwana 26
Cover Hans-Peter Ende, ZALF 26
02 Peter Fiener 27
12 Philipp Raueker, ZALF 27
13 Christoph Herbert-von Loeper 27
14, 24 Guido Rottmann 27
15 Matthias Bauerkamp 28
16 Hendrik Schneider, ZALF 28
17 www.pixabay.com 28
20 Horst Gerke, ZALF 28
21 Rico Prauss 29
22 Régine Berges 29
23 Janina Fago, ZALF 29
24 Heyko Stoebert 29
25 Petair/fotolia.de 36